اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

3xx-8=2x
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 0 کے مساوی نہیں ہو سکتا۔ x سے مساوات کی دونوں اطراف کو ضرب دیں۔
3x^{2}-8=2x
x^{2} حاصل کرنے کے لئے x اور x کو ضرب دیں۔
3x^{2}-8-2x=0
2x کو دونوں طرف سے منہا کریں۔
3x^{2}-2x-8=0
معیاری وضع میں ڈالنے کیلئے پالینامیئل کو پھر ترتیب دیں۔ اصطلاحات کو سب سے زیادہ سے کم ترین پاور کے لحاظ سے ترتیب دیں۔
a+b=-2 ab=3\left(-8\right)=-24
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 3x^{2}+ax+bx-8 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-24 2,-12 3,-8 4,-6
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -24 ہوتا ہے۔
1-24=-23 2-12=-10 3-8=-5 4-6=-2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-6 b=4
حل ایک جوڑا ہے جو میزان -2 دیتا ہے۔
\left(3x^{2}-6x\right)+\left(4x-8\right)
3x^{2}-2x-8 کو بطور \left(3x^{2}-6x\right)+\left(4x-8\right) دوبارہ تحریر کریں۔
3x\left(x-2\right)+4\left(x-2\right)
پہلے گروپ میں 3x اور دوسرے میں 4 اجزائے ضربی میں تقسیم کریں۔
\left(x-2\right)\left(3x+4\right)
عام اصطلاح x-2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=2 x=-\frac{4}{3}
مساوات کا حل تلاش کرنے کیلئے، x-2=0 اور 3x+4=0 حل کریں۔
3xx-8=2x
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 0 کے مساوی نہیں ہو سکتا۔ x سے مساوات کی دونوں اطراف کو ضرب دیں۔
3x^{2}-8=2x
x^{2} حاصل کرنے کے لئے x اور x کو ضرب دیں۔
3x^{2}-8-2x=0
2x کو دونوں طرف سے منہا کریں۔
3x^{2}-2x-8=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-8\right)}}{2\times 3}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 3 کو، b کے لئے -2 کو اور c کے لئے -8 کو متبادل کریں۔
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-8\right)}}{2\times 3}
مربع -2۔
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-8\right)}}{2\times 3}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 3}
-12 کو -8 مرتبہ ضرب دیں۔
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 3}
4 کو 96 میں شامل کریں۔
x=\frac{-\left(-2\right)±10}{2\times 3}
100 کا جذر لیں۔
x=\frac{2±10}{2\times 3}
-2 کا مُخالف 2 ہے۔
x=\frac{2±10}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=\frac{12}{6}
جب ± جمع ہو تو اب مساوات x=\frac{2±10}{6} کو حل کریں۔ 2 کو 10 میں شامل کریں۔
x=2
12 کو 6 سے تقسیم کریں۔
x=-\frac{8}{6}
جب ± منفی ہو تو اب مساوات x=\frac{2±10}{6} کو حل کریں۔ 10 کو 2 میں سے منہا کریں۔
x=-\frac{4}{3}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-8}{6} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=2 x=-\frac{4}{3}
مساوات اب حل ہو گئی ہے۔
3xx-8=2x
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 0 کے مساوی نہیں ہو سکتا۔ x سے مساوات کی دونوں اطراف کو ضرب دیں۔
3x^{2}-8=2x
x^{2} حاصل کرنے کے لئے x اور x کو ضرب دیں۔
3x^{2}-8-2x=0
2x کو دونوں طرف سے منہا کریں۔
3x^{2}-2x=8
دونوں اطراف میں 8 شامل کریں۔ کوئی بھی چیز جمع صفر ہو کر اپنا آپ دیتی ہے۔
\frac{3x^{2}-2x}{3}=\frac{8}{3}
3 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{2}{3}x=\frac{8}{3}
3 سے تقسیم کرنا 3 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{8}{3}+\left(-\frac{1}{3}\right)^{2}
2 سے -\frac{1}{3} حاصل کرنے کے لیے، -\frac{2}{3} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{3} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{8}{3}+\frac{1}{9}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{3} کو مربع کریں۔
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{25}{9}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{8}{3} کو \frac{1}{9} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x-\frac{1}{3}\right)^{2}=\frac{25}{9}
فیکٹر x^{2}-\frac{2}{3}x+\frac{1}{9}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{3}=\frac{5}{3} x-\frac{1}{3}=-\frac{5}{3}
سادہ کریں۔
x=2 x=-\frac{4}{3}
مساوات کے دونوں اطراف سے \frac{1}{3} کو شامل کریں۔