x کے لئے حل کریں
x=1
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=-7 ab=3\times 4=12
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 3x^{2}+ax+bx+4 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,-12 -2,-6 -3,-4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 12 ہوتا ہے۔
-1-12=-13 -2-6=-8 -3-4=-7
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=-3
حل ایک جوڑا ہے جو میزان -7 دیتا ہے۔
\left(3x^{2}-4x\right)+\left(-3x+4\right)
3x^{2}-7x+4 کو بطور \left(3x^{2}-4x\right)+\left(-3x+4\right) دوبارہ تحریر کریں۔
x\left(3x-4\right)-\left(3x-4\right)
پہلے گروپ میں x اور دوسرے میں -1 اجزائے ضربی میں تقسیم کریں۔
\left(3x-4\right)\left(x-1\right)
عام اصطلاح 3x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=\frac{4}{3} x=1
مساوات کا حل تلاش کرنے کیلئے، 3x-4=0 اور x-1=0 حل کریں۔
3x^{2}-7x+4=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\times 4}}{2\times 3}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 3 کو، b کے لئے -7 کو اور c کے لئے 4 کو متبادل کریں۔
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\times 4}}{2\times 3}
مربع -7۔
x=\frac{-\left(-7\right)±\sqrt{49-12\times 4}}{2\times 3}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 3}
-12 کو 4 مرتبہ ضرب دیں۔
x=\frac{-\left(-7\right)±\sqrt{1}}{2\times 3}
49 کو -48 میں شامل کریں۔
x=\frac{-\left(-7\right)±1}{2\times 3}
1 کا جذر لیں۔
x=\frac{7±1}{2\times 3}
-7 کا مُخالف 7 ہے۔
x=\frac{7±1}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=\frac{8}{6}
جب ± جمع ہو تو اب مساوات x=\frac{7±1}{6} کو حل کریں۔ 7 کو 1 میں شامل کریں۔
x=\frac{4}{3}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{8}{6} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=\frac{6}{6}
جب ± منفی ہو تو اب مساوات x=\frac{7±1}{6} کو حل کریں۔ 1 کو 7 میں سے منہا کریں۔
x=1
6 کو 6 سے تقسیم کریں۔
x=\frac{4}{3} x=1
مساوات اب حل ہو گئی ہے۔
3x^{2}-7x+4=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
3x^{2}-7x+4-4=-4
مساوات کے دونوں اطراف سے 4 منہا کریں۔
3x^{2}-7x=-4
4 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
\frac{3x^{2}-7x}{3}=-\frac{4}{3}
3 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{7}{3}x=-\frac{4}{3}
3 سے تقسیم کرنا 3 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{7}{6}\right)^{2}
2 سے -\frac{7}{6} حاصل کرنے کے لیے، -\frac{7}{3} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{7}{6} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{7}{3}x+\frac{49}{36}=-\frac{4}{3}+\frac{49}{36}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{7}{6} کو مربع کریں۔
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{1}{36}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے -\frac{4}{3} کو \frac{49}{36} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x-\frac{7}{6}\right)^{2}=\frac{1}{36}
عامل x^{2}-\frac{7}{3}x+\frac{49}{36}۔ عام طور پر، جب x^{2}+bx+c ایک کامل مربع ہوتا ہے تو، یہ ہمیشہ اس طرح سے عامل ہوسکتا ہے \left(x+\frac{b}{2}\right)^{2}۔
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{7}{6}=\frac{1}{6} x-\frac{7}{6}=-\frac{1}{6}
سادہ کریں۔
x=\frac{4}{3} x=1
مساوات کے دونوں اطراف سے \frac{7}{6} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}