اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

3x^{2}+7x-8=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-8\right)}}{2\times 3}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 3 کو، b کے لئے 7 کو اور c کے لئے -8 کو متبادل کریں۔
x=\frac{-7±\sqrt{49-4\times 3\left(-8\right)}}{2\times 3}
مربع 7۔
x=\frac{-7±\sqrt{49-12\left(-8\right)}}{2\times 3}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-7±\sqrt{49+96}}{2\times 3}
-12 کو -8 مرتبہ ضرب دیں۔
x=\frac{-7±\sqrt{145}}{2\times 3}
49 کو 96 میں شامل کریں۔
x=\frac{-7±\sqrt{145}}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=\frac{\sqrt{145}-7}{6}
جب ± جمع ہو تو اب مساوات x=\frac{-7±\sqrt{145}}{6} کو حل کریں۔ -7 کو \sqrt{145} میں شامل کریں۔
x=\frac{-\sqrt{145}-7}{6}
جب ± منفی ہو تو اب مساوات x=\frac{-7±\sqrt{145}}{6} کو حل کریں۔ \sqrt{145} کو -7 میں سے منہا کریں۔
x=\frac{\sqrt{145}-7}{6} x=\frac{-\sqrt{145}-7}{6}
مساوات اب حل ہو گئی ہے۔
3x^{2}+7x-8=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
3x^{2}+7x-8-\left(-8\right)=-\left(-8\right)
مساوات کے دونوں اطراف سے 8 کو شامل کریں۔
3x^{2}+7x=-\left(-8\right)
-8 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
3x^{2}+7x=8
-8 کو 0 میں سے منہا کریں۔
\frac{3x^{2}+7x}{3}=\frac{8}{3}
3 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{7}{3}x=\frac{8}{3}
3 سے تقسیم کرنا 3 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=\frac{8}{3}+\left(\frac{7}{6}\right)^{2}
2 سے \frac{7}{6} حاصل کرنے کے لیے، \frac{7}{3} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{7}{6} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{8}{3}+\frac{49}{36}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{7}{6} کو مربع کریں۔
x^{2}+\frac{7}{3}x+\frac{49}{36}=\frac{145}{36}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{8}{3} کو \frac{49}{36} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x+\frac{7}{6}\right)^{2}=\frac{145}{36}
فیکٹر x^{2}+\frac{7}{3}x+\frac{49}{36}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{145}{36}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{7}{6}=\frac{\sqrt{145}}{6} x+\frac{7}{6}=-\frac{\sqrt{145}}{6}
سادہ کریں۔
x=\frac{\sqrt{145}-7}{6} x=\frac{-\sqrt{145}-7}{6}
مساوات کے دونوں اطراف سے \frac{7}{6} منہا کریں۔