عنصر
\left(3x-4\right)\left(x+3\right)
جائزہ ليں
\left(3x-4\right)\left(x+3\right)
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=5 ab=3\left(-12\right)=-36
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار 3x^{2}+ax+bx-12 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,36 -2,18 -3,12 -4,9 -6,6
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -36 ہوتا ہے۔
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=9
حل ایک جوڑا ہے جو میزان 5 دیتا ہے۔
\left(3x^{2}-4x\right)+\left(9x-12\right)
3x^{2}+5x-12 کو بطور \left(3x^{2}-4x\right)+\left(9x-12\right) دوبارہ تحریر کریں۔
x\left(3x-4\right)+3\left(3x-4\right)
پہلے گروپ میں x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(3x-4\right)\left(x+3\right)
عام اصطلاح 3x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
3x^{2}+5x-12=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-12\right)}}{2\times 3}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-5±\sqrt{25-4\times 3\left(-12\right)}}{2\times 3}
مربع 5۔
x=\frac{-5±\sqrt{25-12\left(-12\right)}}{2\times 3}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-5±\sqrt{25+144}}{2\times 3}
-12 کو -12 مرتبہ ضرب دیں۔
x=\frac{-5±\sqrt{169}}{2\times 3}
25 کو 144 میں شامل کریں۔
x=\frac{-5±13}{2\times 3}
169 کا جذر لیں۔
x=\frac{-5±13}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=\frac{8}{6}
جب ± جمع ہو تو اب مساوات x=\frac{-5±13}{6} کو حل کریں۔ -5 کو 13 میں شامل کریں۔
x=\frac{4}{3}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{8}{6} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{18}{6}
جب ± منفی ہو تو اب مساوات x=\frac{-5±13}{6} کو حل کریں۔ 13 کو -5 میں سے منہا کریں۔
x=-3
-18 کو 6 سے تقسیم کریں۔
3x^{2}+5x-12=3\left(x-\frac{4}{3}\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل \frac{4}{3} اور x_{2} کے متبادل -3 رکھیں۔
3x^{2}+5x-12=3\left(x-\frac{4}{3}\right)\left(x+3\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
3x^{2}+5x-12=3\times \frac{3x-4}{3}\left(x+3\right)
ایک مشترک ڈینومینیٹر معلوم کر کے اور نیومیریٹر کو منہا کر کے \frac{4}{3} کو x میں سے منہا کریں۔ اور پھر کسر کو اگر ممکن ہو تو اس کی کم ترین اصطلاحات میں سے کم کریں۔
3x^{2}+5x-12=\left(3x-4\right)\left(x+3\right)
3 اور 3 میں عظیم عام عامل 3 کو منسوخ کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}