اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=-1 ab=3\left(-2\right)=-6
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 3x^{2}+ax+bx-2 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-6 2,-3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
1-6=-5 2-3=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=2
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(3x^{2}-3x\right)+\left(2x-2\right)
3x^{2}-x-2 کو بطور \left(3x^{2}-3x\right)+\left(2x-2\right) دوبارہ تحریر کریں۔
3x\left(x-1\right)+2\left(x-1\right)
پہلے گروپ میں 3x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(x-1\right)\left(3x+2\right)
عام اصطلاح x-1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=1 x=-\frac{2}{3}
مساوات کا حل تلاش کرنے کیلئے، x-1=0 اور 3x+2=0 حل کریں۔
3x^{2}-x-2=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 3 کو، b کے لئے -1 کو اور c کے لئے -2 کو متبادل کریں۔
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
-12 کو -2 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
1 کو 24 میں شامل کریں۔
x=\frac{-\left(-1\right)±5}{2\times 3}
25 کا جذر لیں۔
x=\frac{1±5}{2\times 3}
-1 کا مُخالف 1 ہے۔
x=\frac{1±5}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=\frac{6}{6}
جب ± جمع ہو تو اب مساوات x=\frac{1±5}{6} کو حل کریں۔ 1 کو 5 میں شامل کریں۔
x=1
6 کو 6 سے تقسیم کریں۔
x=-\frac{4}{6}
جب ± منفی ہو تو اب مساوات x=\frac{1±5}{6} کو حل کریں۔ 5 کو 1 میں سے منہا کریں۔
x=-\frac{2}{3}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-4}{6} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=1 x=-\frac{2}{3}
مساوات اب حل ہو گئی ہے۔
3x^{2}-x-2=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
3x^{2}-x-2-\left(-2\right)=-\left(-2\right)
مساوات کے دونوں اطراف سے 2 کو شامل کریں۔
3x^{2}-x=-\left(-2\right)
-2 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
3x^{2}-x=2
-2 کو 0 میں سے منہا کریں۔
\frac{3x^{2}-x}{3}=\frac{2}{3}
3 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{1}{3}x=\frac{2}{3}
3 سے تقسیم کرنا 3 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
2 سے -\frac{1}{6} حاصل کرنے کے لیے، -\frac{1}{3} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{6} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{6} کو مربع کریں۔
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{2}{3} کو \frac{1}{36} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
فیکٹر x^{2}-\frac{1}{3}x+\frac{1}{36}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
سادہ کریں۔
x=1 x=-\frac{2}{3}
مساوات کے دونوں اطراف سے \frac{1}{6} کو شامل کریں۔