x کے لئے حل کریں
x = -\frac{31}{3} = -10\frac{1}{3} \approx -10.333333333
x=12
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=-5 ab=3\left(-372\right)=-1116
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 3x^{2}+ax+bx-372 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-1116 2,-558 3,-372 4,-279 6,-186 9,-124 12,-93 18,-62 31,-36
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -1116 ہوتا ہے۔
1-1116=-1115 2-558=-556 3-372=-369 4-279=-275 6-186=-180 9-124=-115 12-93=-81 18-62=-44 31-36=-5
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-36 b=31
حل ایک جوڑا ہے جو میزان -5 دیتا ہے۔
\left(3x^{2}-36x\right)+\left(31x-372\right)
3x^{2}-5x-372 کو بطور \left(3x^{2}-36x\right)+\left(31x-372\right) دوبارہ تحریر کریں۔
3x\left(x-12\right)+31\left(x-12\right)
پہلے گروپ میں 3x اور دوسرے میں 31 اجزائے ضربی میں تقسیم کریں۔
\left(x-12\right)\left(3x+31\right)
عام اصطلاح x-12 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=12 x=-\frac{31}{3}
مساوات کا حل تلاش کرنے کیلئے، x-12=0 اور 3x+31=0 حل کریں۔
3x^{2}-5x-372=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-372\right)}}{2\times 3}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 3 کو، b کے لئے -5 کو اور c کے لئے -372 کو متبادل کریں۔
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-372\right)}}{2\times 3}
مربع -5۔
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-372\right)}}{2\times 3}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-\left(-5\right)±\sqrt{25+4464}}{2\times 3}
-12 کو -372 مرتبہ ضرب دیں۔
x=\frac{-\left(-5\right)±\sqrt{4489}}{2\times 3}
25 کو 4464 میں شامل کریں۔
x=\frac{-\left(-5\right)±67}{2\times 3}
4489 کا جذر لیں۔
x=\frac{5±67}{2\times 3}
-5 کا مُخالف 5 ہے۔
x=\frac{5±67}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=\frac{72}{6}
جب ± جمع ہو تو اب مساوات x=\frac{5±67}{6} کو حل کریں۔ 5 کو 67 میں شامل کریں۔
x=12
72 کو 6 سے تقسیم کریں۔
x=-\frac{62}{6}
جب ± منفی ہو تو اب مساوات x=\frac{5±67}{6} کو حل کریں۔ 67 کو 5 میں سے منہا کریں۔
x=-\frac{31}{3}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-62}{6} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=12 x=-\frac{31}{3}
مساوات اب حل ہو گئی ہے۔
3x^{2}-5x-372=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
3x^{2}-5x-372-\left(-372\right)=-\left(-372\right)
مساوات کے دونوں اطراف سے 372 کو شامل کریں۔
3x^{2}-5x=-\left(-372\right)
-372 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
3x^{2}-5x=372
-372 کو 0 میں سے منہا کریں۔
\frac{3x^{2}-5x}{3}=\frac{372}{3}
3 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{5}{3}x=\frac{372}{3}
3 سے تقسیم کرنا 3 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{5}{3}x=124
372 کو 3 سے تقسیم کریں۔
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=124+\left(-\frac{5}{6}\right)^{2}
2 سے -\frac{5}{6} حاصل کرنے کے لیے، -\frac{5}{3} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{5}{6} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{5}{3}x+\frac{25}{36}=124+\frac{25}{36}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{5}{6} کو مربع کریں۔
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{4489}{36}
124 کو \frac{25}{36} میں شامل کریں۔
\left(x-\frac{5}{6}\right)^{2}=\frac{4489}{36}
فیکٹر x^{2}-\frac{5}{3}x+\frac{25}{36}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{4489}{36}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{5}{6}=\frac{67}{6} x-\frac{5}{6}=-\frac{67}{6}
سادہ کریں۔
x=12 x=-\frac{31}{3}
مساوات کے دونوں اطراف سے \frac{5}{6} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}