اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=17 ab=3\times 10=30
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار 3x^{2}+ax+bx+10 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,30 2,15 3,10 5,6
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 30 ہوتا ہے۔
1+30=31 2+15=17 3+10=13 5+6=11
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=15
حل ایک جوڑا ہے جو میزان 17 دیتا ہے۔
\left(3x^{2}+2x\right)+\left(15x+10\right)
3x^{2}+17x+10 کو بطور \left(3x^{2}+2x\right)+\left(15x+10\right) دوبارہ تحریر کریں۔
x\left(3x+2\right)+5\left(3x+2\right)
پہلے گروپ میں x اور دوسرے میں 5 اجزائے ضربی میں تقسیم کریں۔
\left(3x+2\right)\left(x+5\right)
عام اصطلاح 3x+2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
3x^{2}+17x+10=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-17±\sqrt{17^{2}-4\times 3\times 10}}{2\times 3}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-17±\sqrt{289-4\times 3\times 10}}{2\times 3}
مربع 17۔
x=\frac{-17±\sqrt{289-12\times 10}}{2\times 3}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-17±\sqrt{289-120}}{2\times 3}
-12 کو 10 مرتبہ ضرب دیں۔
x=\frac{-17±\sqrt{169}}{2\times 3}
289 کو -120 میں شامل کریں۔
x=\frac{-17±13}{2\times 3}
169 کا جذر لیں۔
x=\frac{-17±13}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=-\frac{4}{6}
جب ± جمع ہو تو اب مساوات x=\frac{-17±13}{6} کو حل کریں۔ -17 کو 13 میں شامل کریں۔
x=-\frac{2}{3}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-4}{6} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{30}{6}
جب ± منفی ہو تو اب مساوات x=\frac{-17±13}{6} کو حل کریں۔ 13 کو -17 میں سے منہا کریں۔
x=-5
-30 کو 6 سے تقسیم کریں۔
3x^{2}+17x+10=3\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-5\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل -\frac{2}{3} اور x_{2} کے متبادل -5 رکھیں۔
3x^{2}+17x+10=3\left(x+\frac{2}{3}\right)\left(x+5\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
3x^{2}+17x+10=3\times \frac{3x+2}{3}\left(x+5\right)
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{2}{3} کو x میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
3x^{2}+17x+10=\left(3x+2\right)\left(x+5\right)
3 اور 3 میں عظیم عام عامل 3 کو منسوخ کریں۔