اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

3\left(x^{2}+4x\right)
اجزائے ضربی میں تقسیم کریں 3۔
x\left(x+4\right)
x^{2}+4x پر غورکریں۔ اجزائے ضربی میں تقسیم کریں x۔
3x\left(x+4\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
3x^{2}+12x=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-12±\sqrt{12^{2}}}{2\times 3}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-12±12}{2\times 3}
12^{2} کا جذر لیں۔
x=\frac{-12±12}{6}
2 کو 3 مرتبہ ضرب دیں۔
x=\frac{0}{6}
جب ± جمع ہو تو اب مساوات x=\frac{-12±12}{6} کو حل کریں۔ -12 کو 12 میں شامل کریں۔
x=0
0 کو 6 سے تقسیم کریں۔
x=-\frac{24}{6}
جب ± منفی ہو تو اب مساوات x=\frac{-12±12}{6} کو حل کریں۔ 12 کو -12 میں سے منہا کریں۔
x=-4
-24 کو 6 سے تقسیم کریں۔
3x^{2}+12x=3x\left(x-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 0 اور x_{2} کے متبادل -4 رکھیں۔
3x^{2}+12x=3x\left(x+4\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔