عنصر
27\left(x-\left(-\frac{\sqrt{6}}{9}-\frac{1}{3}\right)\right)\left(x-\left(\frac{\sqrt{6}}{9}-\frac{1}{3}\right)\right)
جائزہ ليں
27x^{2}+18x+1
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
27x^{2}+18x+1=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-18±\sqrt{18^{2}-4\times 27}}{2\times 27}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-18±\sqrt{324-4\times 27}}{2\times 27}
مربع 18۔
x=\frac{-18±\sqrt{324-108}}{2\times 27}
-4 کو 27 مرتبہ ضرب دیں۔
x=\frac{-18±\sqrt{216}}{2\times 27}
324 کو -108 میں شامل کریں۔
x=\frac{-18±6\sqrt{6}}{2\times 27}
216 کا جذر لیں۔
x=\frac{-18±6\sqrt{6}}{54}
2 کو 27 مرتبہ ضرب دیں۔
x=\frac{6\sqrt{6}-18}{54}
جب ± جمع ہو تو اب مساوات x=\frac{-18±6\sqrt{6}}{54} کو حل کریں۔ -18 کو 6\sqrt{6} میں شامل کریں۔
x=\frac{\sqrt{6}}{9}-\frac{1}{3}
-18+6\sqrt{6} کو 54 سے تقسیم کریں۔
x=\frac{-6\sqrt{6}-18}{54}
جب ± منفی ہو تو اب مساوات x=\frac{-18±6\sqrt{6}}{54} کو حل کریں۔ 6\sqrt{6} کو -18 میں سے منہا کریں۔
x=-\frac{\sqrt{6}}{9}-\frac{1}{3}
-18-6\sqrt{6} کو 54 سے تقسیم کریں۔
27x^{2}+18x+1=27\left(x-\left(\frac{\sqrt{6}}{9}-\frac{1}{3}\right)\right)\left(x-\left(-\frac{\sqrt{6}}{9}-\frac{1}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل -\frac{1}{3}+\frac{\sqrt{6}}{9} اور x_{2} کے متبادل -\frac{1}{3}-\frac{\sqrt{6}}{9} رکھیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}