x کے لئے حل کریں
x=-\frac{1}{5}=-0.2
x=\frac{1}{4}=0.25
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
a+b=-1 ab=20\left(-1\right)=-20
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 20x^{2}+ax+bx-1 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-20 2,-10 4,-5
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -20 ہوتا ہے۔
1-20=-19 2-10=-8 4-5=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-5 b=4
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(20x^{2}-5x\right)+\left(4x-1\right)
20x^{2}-x-1 کو بطور \left(20x^{2}-5x\right)+\left(4x-1\right) دوبارہ تحریر کریں۔
5x\left(4x-1\right)+4x-1
20x^{2}-5x میں 5x اجزائے ضربی میں تقسیم کریں۔
\left(4x-1\right)\left(5x+1\right)
عام اصطلاح 4x-1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=\frac{1}{4} x=-\frac{1}{5}
مساوات کا حل تلاش کرنے کیلئے، 4x-1=0 اور 5x+1=0 حل کریں۔
20x^{2}-x-1=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-1\right)±\sqrt{1-4\times 20\left(-1\right)}}{2\times 20}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 20 کو، b کے لئے -1 کو اور c کے لئے -1 کو متبادل کریں۔
x=\frac{-\left(-1\right)±\sqrt{1-80\left(-1\right)}}{2\times 20}
-4 کو 20 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{1+80}}{2\times 20}
-80 کو -1 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{81}}{2\times 20}
1 کو 80 میں شامل کریں۔
x=\frac{-\left(-1\right)±9}{2\times 20}
81 کا جذر لیں۔
x=\frac{1±9}{2\times 20}
-1 کا مُخالف 1 ہے۔
x=\frac{1±9}{40}
2 کو 20 مرتبہ ضرب دیں۔
x=\frac{10}{40}
جب ± جمع ہو تو اب مساوات x=\frac{1±9}{40} کو حل کریں۔ 1 کو 9 میں شامل کریں۔
x=\frac{1}{4}
10 کو اخذ اور منسوخ کرتے ہوئے \frac{10}{40} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{8}{40}
جب ± منفی ہو تو اب مساوات x=\frac{1±9}{40} کو حل کریں۔ 9 کو 1 میں سے منہا کریں۔
x=-\frac{1}{5}
8 کو اخذ اور منسوخ کرتے ہوئے \frac{-8}{40} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=\frac{1}{4} x=-\frac{1}{5}
مساوات اب حل ہو گئی ہے۔
20x^{2}-x-1=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
20x^{2}-x-1-\left(-1\right)=-\left(-1\right)
مساوات کے دونوں اطراف سے 1 کو شامل کریں۔
20x^{2}-x=-\left(-1\right)
-1 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
20x^{2}-x=1
-1 کو 0 میں سے منہا کریں۔
\frac{20x^{2}-x}{20}=\frac{1}{20}
20 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{1}{20}x=\frac{1}{20}
20 سے تقسیم کرنا 20 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{1}{20}x+\left(-\frac{1}{40}\right)^{2}=\frac{1}{20}+\left(-\frac{1}{40}\right)^{2}
2 سے -\frac{1}{40} حاصل کرنے کے لیے، -\frac{1}{20} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{40} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{1}{20}x+\frac{1}{1600}=\frac{1}{20}+\frac{1}{1600}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{40} کو مربع کریں۔
x^{2}-\frac{1}{20}x+\frac{1}{1600}=\frac{81}{1600}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{1}{20} کو \frac{1}{1600} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x-\frac{1}{40}\right)^{2}=\frac{81}{1600}
فیکٹر x^{2}-\frac{1}{20}x+\frac{1}{1600}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{40}\right)^{2}}=\sqrt{\frac{81}{1600}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{40}=\frac{9}{40} x-\frac{1}{40}=-\frac{9}{40}
سادہ کریں۔
x=\frac{1}{4} x=-\frac{1}{5}
مساوات کے دونوں اطراف سے \frac{1}{40} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}