اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x^{2}-2x-15=0
2 سے دونوں اطراف کو تقسیم کریں۔
a+b=-2 ab=1\left(-15\right)=-15
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-15 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-15 3,-5
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -15 ہوتا ہے۔
1-15=-14 3-5=-2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-5 b=3
حل ایک جوڑا ہے جو میزان -2 دیتا ہے۔
\left(x^{2}-5x\right)+\left(3x-15\right)
x^{2}-2x-15 کو بطور \left(x^{2}-5x\right)+\left(3x-15\right) دوبارہ تحریر کریں۔
x\left(x-5\right)+3\left(x-5\right)
پہلے گروپ میں x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(x-5\right)\left(x+3\right)
عام اصطلاح x-5 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=5 x=-3
مساوات کا حل تلاش کرنے کیلئے، x-5=0 اور x+3=0 حل کریں۔
2x^{2}-4x-30=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-30\right)}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے -4 کو اور c کے لئے -30 کو متبادل کریں۔
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-30\right)}}{2\times 2}
مربع -4۔
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-30\right)}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-\left(-4\right)±\sqrt{16+240}}{2\times 2}
-8 کو -30 مرتبہ ضرب دیں۔
x=\frac{-\left(-4\right)±\sqrt{256}}{2\times 2}
16 کو 240 میں شامل کریں۔
x=\frac{-\left(-4\right)±16}{2\times 2}
256 کا جذر لیں۔
x=\frac{4±16}{2\times 2}
-4 کا مُخالف 4 ہے۔
x=\frac{4±16}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{20}{4}
جب ± جمع ہو تو اب مساوات x=\frac{4±16}{4} کو حل کریں۔ 4 کو 16 میں شامل کریں۔
x=5
20 کو 4 سے تقسیم کریں۔
x=-\frac{12}{4}
جب ± منفی ہو تو اب مساوات x=\frac{4±16}{4} کو حل کریں۔ 16 کو 4 میں سے منہا کریں۔
x=-3
-12 کو 4 سے تقسیم کریں۔
x=5 x=-3
مساوات اب حل ہو گئی ہے۔
2x^{2}-4x-30=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
2x^{2}-4x-30-\left(-30\right)=-\left(-30\right)
مساوات کے دونوں اطراف سے 30 کو شامل کریں۔
2x^{2}-4x=-\left(-30\right)
-30 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
2x^{2}-4x=30
-30 کو 0 میں سے منہا کریں۔
\frac{2x^{2}-4x}{2}=\frac{30}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\left(-\frac{4}{2}\right)x=\frac{30}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-2x=\frac{30}{2}
-4 کو 2 سے تقسیم کریں۔
x^{2}-2x=15
30 کو 2 سے تقسیم کریں۔
x^{2}-2x+1=15+1
2 سے -1 حاصل کرنے کے لیے، -2 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -1 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-2x+1=16
15 کو 1 میں شامل کریں۔
\left(x-1\right)^{2}=16
فیکٹر x^{2}-2x+1۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
مساوات کی دونوں اطراف کا جذر لیں۔
x-1=4 x-1=-4
سادہ کریں۔
x=5 x=-3
مساوات کے دونوں اطراف سے 1 کو شامل کریں۔