x کے لئے حل کریں
x=-1
x=2
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
x^{2}-x-2=0
2 سے دونوں اطراف کو تقسیم کریں۔
a+b=-1 ab=1\left(-2\right)=-2
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-2 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=-2 b=1
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(x^{2}-2x\right)+\left(x-2\right)
x^{2}-x-2 کو بطور \left(x^{2}-2x\right)+\left(x-2\right) دوبارہ تحریر کریں۔
x\left(x-2\right)+x-2
x^{2}-2x میں x اجزائے ضربی میں تقسیم کریں۔
\left(x-2\right)\left(x+1\right)
عام اصطلاح x-2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=2 x=-1
مساوات کا حل تلاش کرنے کیلئے، x-2=0 اور x+1=0 حل کریں۔
2x^{2}-2x-4=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے -2 کو اور c کے لئے -4 کو متبادل کریں۔
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-4\right)}}{2\times 2}
مربع -2۔
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-4\right)}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times 2}
-8 کو -4 مرتبہ ضرب دیں۔
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times 2}
4 کو 32 میں شامل کریں۔
x=\frac{-\left(-2\right)±6}{2\times 2}
36 کا جذر لیں۔
x=\frac{2±6}{2\times 2}
-2 کا مُخالف 2 ہے۔
x=\frac{2±6}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{8}{4}
جب ± جمع ہو تو اب مساوات x=\frac{2±6}{4} کو حل کریں۔ 2 کو 6 میں شامل کریں۔
x=2
8 کو 4 سے تقسیم کریں۔
x=-\frac{4}{4}
جب ± منفی ہو تو اب مساوات x=\frac{2±6}{4} کو حل کریں۔ 6 کو 2 میں سے منہا کریں۔
x=-1
-4 کو 4 سے تقسیم کریں۔
x=2 x=-1
مساوات اب حل ہو گئی ہے۔
2x^{2}-2x-4=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
2x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
مساوات کے دونوں اطراف سے 4 کو شامل کریں۔
2x^{2}-2x=-\left(-4\right)
-4 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
2x^{2}-2x=4
-4 کو 0 میں سے منہا کریں۔
\frac{2x^{2}-2x}{2}=\frac{4}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\left(-\frac{2}{2}\right)x=\frac{4}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-x=\frac{4}{2}
-2 کو 2 سے تقسیم کریں۔
x^{2}-x=2
4 کو 2 سے تقسیم کریں۔
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
2 سے -\frac{1}{2} حاصل کرنے کے لیے، -1 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{2} کو مربع کریں۔
x^{2}-x+\frac{1}{4}=\frac{9}{4}
2 کو \frac{1}{4} میں شامل کریں۔
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
فیکٹر x^{2}-x+\frac{1}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
سادہ کریں۔
x=2 x=-1
مساوات کے دونوں اطراف سے \frac{1}{2} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}