اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x\left(2x-14\right)=0
اجزائے ضربی میں تقسیم کریں x۔
x=0 x=7
مساوات کا حل تلاش کرنے کیلئے، x=0 اور 2x-14=0 حل کریں۔
2x^{2}-14x=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے -14 کو اور c کے لئے 0 کو متبادل کریں۔
x=\frac{-\left(-14\right)±14}{2\times 2}
\left(-14\right)^{2} کا جذر لیں۔
x=\frac{14±14}{2\times 2}
-14 کا مُخالف 14 ہے۔
x=\frac{14±14}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{28}{4}
جب ± جمع ہو تو اب مساوات x=\frac{14±14}{4} کو حل کریں۔ 14 کو 14 میں شامل کریں۔
x=7
28 کو 4 سے تقسیم کریں۔
x=\frac{0}{4}
جب ± منفی ہو تو اب مساوات x=\frac{14±14}{4} کو حل کریں۔ 14 کو 14 میں سے منہا کریں۔
x=0
0 کو 4 سے تقسیم کریں۔
x=7 x=0
مساوات اب حل ہو گئی ہے۔
2x^{2}-14x=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
\frac{2x^{2}-14x}{2}=\frac{0}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\left(-\frac{14}{2}\right)x=\frac{0}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-7x=\frac{0}{2}
-14 کو 2 سے تقسیم کریں۔
x^{2}-7x=0
0 کو 2 سے تقسیم کریں۔
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
2 سے -\frac{7}{2} حاصل کرنے کے لیے، -7 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{7}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{7}{2} کو مربع کریں۔
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
فیکٹر x^{2}-7x+\frac{49}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
سادہ کریں۔
x=7 x=0
مساوات کے دونوں اطراف سے \frac{7}{2} کو شامل کریں۔