اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

2x^{2}-x=5
x کو دونوں طرف سے منہا کریں۔
2x^{2}-x-5=0
5 کو دونوں طرف سے منہا کریں۔
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-5\right)}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے -1 کو اور c کے لئے -5 کو متبادل کریں۔
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-5\right)}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{1+40}}{2\times 2}
-8 کو -5 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{41}}{2\times 2}
1 کو 40 میں شامل کریں۔
x=\frac{1±\sqrt{41}}{2\times 2}
-1 کا مُخالف 1 ہے۔
x=\frac{1±\sqrt{41}}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{\sqrt{41}+1}{4}
جب ± جمع ہو تو اب مساوات x=\frac{1±\sqrt{41}}{4} کو حل کریں۔ 1 کو \sqrt{41} میں شامل کریں۔
x=\frac{1-\sqrt{41}}{4}
جب ± منفی ہو تو اب مساوات x=\frac{1±\sqrt{41}}{4} کو حل کریں۔ \sqrt{41} کو 1 میں سے منہا کریں۔
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
مساوات اب حل ہو گئی ہے۔
2x^{2}-x=5
x کو دونوں طرف سے منہا کریں۔
\frac{2x^{2}-x}{2}=\frac{5}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{1}{2}x=\frac{5}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{4}\right)^{2}
2 سے -\frac{1}{4} حاصل کرنے کے لیے، -\frac{1}{2} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{4} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{4} کو مربع کریں۔
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{41}{16}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{5}{2} کو \frac{1}{16} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x-\frac{1}{4}\right)^{2}=\frac{41}{16}
عامل x^{2}-\frac{1}{2}x+\frac{1}{16}۔ عام طور پر، جب x^{2}+bx+c ایک کامل مربع ہوتا ہے تو، یہ ہمیشہ اس طرح سے عامل ہوسکتا ہے \left(x+\frac{b}{2}\right)^{2}۔
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{4}=\frac{\sqrt{41}}{4} x-\frac{1}{4}=-\frac{\sqrt{41}}{4}
سادہ کریں۔
x=\frac{\sqrt{41}+1}{4} x=\frac{1-\sqrt{41}}{4}
مساوات کے دونوں اطراف سے \frac{1}{4} کو شامل کریں۔