x کے لئے حل کریں
x=-4
x=-\frac{1}{2}=-0.5
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
2x^{2}+9x+7-3=0
3 کو دونوں طرف سے منہا کریں۔
2x^{2}+9x+4=0
4 حاصل کرنے کے لئے 7 کو 3 سے تفریق کریں۔
a+b=9 ab=2\times 4=8
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 2x^{2}+ax+bx+4 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,8 2,4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 8 ہوتا ہے۔
1+8=9 2+4=6
ہر جوڑے کی رقم کا حساب لگائیں۔
a=1 b=8
حل ایک جوڑا ہے جو میزان 9 دیتا ہے۔
\left(2x^{2}+x\right)+\left(8x+4\right)
2x^{2}+9x+4 کو بطور \left(2x^{2}+x\right)+\left(8x+4\right) دوبارہ تحریر کریں۔
x\left(2x+1\right)+4\left(2x+1\right)
پہلے گروپ میں x اور دوسرے میں 4 اجزائے ضربی میں تقسیم کریں۔
\left(2x+1\right)\left(x+4\right)
عام اصطلاح 2x+1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=-\frac{1}{2} x=-4
مساوات کا حل تلاش کرنے کیلئے، 2x+1=0 اور x+4=0 حل کریں۔
2x^{2}+9x+7=3
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
2x^{2}+9x+7-3=3-3
مساوات کے دونوں اطراف سے 3 منہا کریں۔
2x^{2}+9x+7-3=0
3 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
2x^{2}+9x+4=0
3 کو 7 میں سے منہا کریں۔
x=\frac{-9±\sqrt{9^{2}-4\times 2\times 4}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے 9 کو اور c کے لئے 4 کو متبادل کریں۔
x=\frac{-9±\sqrt{81-4\times 2\times 4}}{2\times 2}
مربع 9۔
x=\frac{-9±\sqrt{81-8\times 4}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-9±\sqrt{81-32}}{2\times 2}
-8 کو 4 مرتبہ ضرب دیں۔
x=\frac{-9±\sqrt{49}}{2\times 2}
81 کو -32 میں شامل کریں۔
x=\frac{-9±7}{2\times 2}
49 کا جذر لیں۔
x=\frac{-9±7}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=-\frac{2}{4}
جب ± جمع ہو تو اب مساوات x=\frac{-9±7}{4} کو حل کریں۔ -9 کو 7 میں شامل کریں۔
x=-\frac{1}{2}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-2}{4} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{16}{4}
جب ± منفی ہو تو اب مساوات x=\frac{-9±7}{4} کو حل کریں۔ 7 کو -9 میں سے منہا کریں۔
x=-4
-16 کو 4 سے تقسیم کریں۔
x=-\frac{1}{2} x=-4
مساوات اب حل ہو گئی ہے۔
2x^{2}+9x+7=3
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
2x^{2}+9x+7-7=3-7
مساوات کے دونوں اطراف سے 7 منہا کریں۔
2x^{2}+9x=3-7
7 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
2x^{2}+9x=-4
7 کو 3 میں سے منہا کریں۔
\frac{2x^{2}+9x}{2}=-\frac{4}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{9}{2}x=-\frac{4}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+\frac{9}{2}x=-2
-4 کو 2 سے تقسیم کریں۔
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=-2+\left(\frac{9}{4}\right)^{2}
2 سے \frac{9}{4} حاصل کرنے کے لیے، \frac{9}{2} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{9}{4} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+\frac{9}{2}x+\frac{81}{16}=-2+\frac{81}{16}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{9}{4} کو مربع کریں۔
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{49}{16}
-2 کو \frac{81}{16} میں شامل کریں۔
\left(x+\frac{9}{4}\right)^{2}=\frac{49}{16}
فیکٹر x^{2}+\frac{9}{2}x+\frac{81}{16}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{9}{4}=\frac{7}{4} x+\frac{9}{4}=-\frac{7}{4}
سادہ کریں۔
x=-\frac{1}{2} x=-4
مساوات کے دونوں اطراف سے \frac{9}{4} منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}