x کے لئے حل کریں
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=-1
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
2x^{2}+15x-8x=-5
8x کو دونوں طرف سے منہا کریں۔
2x^{2}+7x=-5
7x حاصل کرنے کے لئے 15x اور -8x کو یکجا کریں۔
2x^{2}+7x+5=0
دونوں اطراف میں 5 شامل کریں۔
a+b=7 ab=2\times 5=10
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 2x^{2}+ax+bx+5 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,10 2,5
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 10 ہوتا ہے۔
1+10=11 2+5=7
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=5
حل ایک جوڑا ہے جو میزان 7 دیتا ہے۔
\left(2x^{2}+2x\right)+\left(5x+5\right)
2x^{2}+7x+5 کو بطور \left(2x^{2}+2x\right)+\left(5x+5\right) دوبارہ تحریر کریں۔
2x\left(x+1\right)+5\left(x+1\right)
پہلے گروپ میں 2x اور دوسرے میں 5 اجزائے ضربی میں تقسیم کریں۔
\left(x+1\right)\left(2x+5\right)
عام اصطلاح x+1 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=-1 x=-\frac{5}{2}
مساوات کا حل تلاش کرنے کیلئے، x+1=0 اور 2x+5=0 حل کریں۔
2x^{2}+15x-8x=-5
8x کو دونوں طرف سے منہا کریں۔
2x^{2}+7x=-5
7x حاصل کرنے کے لئے 15x اور -8x کو یکجا کریں۔
2x^{2}+7x+5=0
دونوں اطراف میں 5 شامل کریں۔
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے 7 کو اور c کے لئے 5 کو متبادل کریں۔
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
مربع 7۔
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-7±\sqrt{49-40}}{2\times 2}
-8 کو 5 مرتبہ ضرب دیں۔
x=\frac{-7±\sqrt{9}}{2\times 2}
49 کو -40 میں شامل کریں۔
x=\frac{-7±3}{2\times 2}
9 کا جذر لیں۔
x=\frac{-7±3}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=-\frac{4}{4}
جب ± جمع ہو تو اب مساوات x=\frac{-7±3}{4} کو حل کریں۔ -7 کو 3 میں شامل کریں۔
x=-1
-4 کو 4 سے تقسیم کریں۔
x=-\frac{10}{4}
جب ± منفی ہو تو اب مساوات x=\frac{-7±3}{4} کو حل کریں۔ 3 کو -7 میں سے منہا کریں۔
x=-\frac{5}{2}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-10}{4} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-1 x=-\frac{5}{2}
مساوات اب حل ہو گئی ہے۔
2x^{2}+15x-8x=-5
8x کو دونوں طرف سے منہا کریں۔
2x^{2}+7x=-5
7x حاصل کرنے کے لئے 15x اور -8x کو یکجا کریں۔
\frac{2x^{2}+7x}{2}=-\frac{5}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{7}{2}x=-\frac{5}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{7}{4}\right)^{2}
2 سے \frac{7}{4} حاصل کرنے کے لیے، \frac{7}{2} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{7}{4} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{5}{2}+\frac{49}{16}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{7}{4} کو مربع کریں۔
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{9}{16}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے -\frac{5}{2} کو \frac{49}{16} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x+\frac{7}{4}\right)^{2}=\frac{9}{16}
فیکٹر x^{2}+\frac{7}{2}x+\frac{49}{16}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{7}{4}=\frac{3}{4} x+\frac{7}{4}=-\frac{3}{4}
سادہ کریں۔
x=-1 x=-\frac{5}{2}
مساوات کے دونوں اطراف سے \frac{7}{4} منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}