اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

\left(2x\right)^{2}=\left(\sqrt{4x+24}\right)^{2}
مساوات کی دونوں جانب مربع کریں۔
2^{2}x^{2}=\left(\sqrt{4x+24}\right)^{2}
\left(2x\right)^{2} کو وسیع کریں۔
4x^{2}=\left(\sqrt{4x+24}\right)^{2}
2 کی 2 پاور کا حساب کریں اور 4 حاصل کریں۔
4x^{2}=4x+24
2 کی \sqrt{4x+24} پاور کا حساب کریں اور 4x+24 حاصل کریں۔
4x^{2}-4x=24
4x کو دونوں طرف سے منہا کریں۔
4x^{2}-4x-24=0
24 کو دونوں طرف سے منہا کریں۔
x^{2}-x-6=0
4 سے دونوں اطراف کو تقسیم کریں۔
a+b=-1 ab=1\left(-6\right)=-6
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-6 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-6 2,-3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
1-6=-5 2-3=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=2
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(x^{2}-3x\right)+\left(2x-6\right)
x^{2}-x-6 کو بطور \left(x^{2}-3x\right)+\left(2x-6\right) دوبارہ تحریر کریں۔
x\left(x-3\right)+2\left(x-3\right)
پہلے گروپ میں x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(x-3\right)\left(x+2\right)
عام اصطلاح x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=3 x=-2
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور x+2=0 حل کریں۔
2\times 3=\sqrt{4\times 3+24}
مساوات 2x=\sqrt{4x+24} میں x کے لئے 3 کو متبادل کریں۔
6=6
سادہ کریں۔ قدر x=3 مساوات کو مطمئن کر رہی ہے۔
2\left(-2\right)=\sqrt{4\left(-2\right)+24}
مساوات 2x=\sqrt{4x+24} میں x کے لئے -2 کو متبادل کریں۔
-4=4
سادہ کریں۔ قدر x=-2 مساوات کو مطمئن نہیں کرتی کیونکہ بائیں اور دائیں جانب کی علامات ایک دوسرے سے مختلف ہیں۔
x=3
مساوات 2x=\sqrt{4x+24} کا ایک منفرد حل موجود ہے۔