اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=3 ab=2\left(-9\right)=-18
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو 2x^{2}+ax+bx-9 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,18 -2,9 -3,6
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -18 ہوتا ہے۔
-1+18=17 -2+9=7 -3+6=3
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=6
حل ایک جوڑا ہے جو میزان 3 دیتا ہے۔
\left(2x^{2}-3x\right)+\left(6x-9\right)
2x^{2}+3x-9 کو بطور \left(2x^{2}-3x\right)+\left(6x-9\right) دوبارہ تحریر کریں۔
x\left(2x-3\right)+3\left(2x-3\right)
پہلے گروپ میں x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(2x-3\right)\left(x+3\right)
عام اصطلاح 2x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=\frac{3}{2} x=-3
مساوات کا حل تلاش کرنے کیلئے، 2x-3=0 اور x+3=0 حل کریں۔
2x^{2}+3x-9=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-9\right)}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے 3 کو اور c کے لئے -9 کو متبادل کریں۔
x=\frac{-3±\sqrt{9-4\times 2\left(-9\right)}}{2\times 2}
مربع 3۔
x=\frac{-3±\sqrt{9-8\left(-9\right)}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-3±\sqrt{9+72}}{2\times 2}
-8 کو -9 مرتبہ ضرب دیں۔
x=\frac{-3±\sqrt{81}}{2\times 2}
9 کو 72 میں شامل کریں۔
x=\frac{-3±9}{2\times 2}
81 کا جذر لیں۔
x=\frac{-3±9}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{6}{4}
جب ± جمع ہو تو اب مساوات x=\frac{-3±9}{4} کو حل کریں۔ -3 کو 9 میں شامل کریں۔
x=\frac{3}{2}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{6}{4} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{12}{4}
جب ± منفی ہو تو اب مساوات x=\frac{-3±9}{4} کو حل کریں۔ 9 کو -3 میں سے منہا کریں۔
x=-3
-12 کو 4 سے تقسیم کریں۔
x=\frac{3}{2} x=-3
مساوات اب حل ہو گئی ہے۔
2x^{2}+3x-9=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
2x^{2}+3x-9-\left(-9\right)=-\left(-9\right)
مساوات کے دونوں اطراف سے 9 کو شامل کریں۔
2x^{2}+3x=-\left(-9\right)
-9 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
2x^{2}+3x=9
-9 کو 0 میں سے منہا کریں۔
\frac{2x^{2}+3x}{2}=\frac{9}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{3}{2}x=\frac{9}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(\frac{3}{4}\right)^{2}
2 سے \frac{3}{4} حاصل کرنے کے لیے، \frac{3}{2} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر \frac{3}{4} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر \frac{3}{4} کو مربع کریں۔
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{9}{2} کو \frac{9}{16} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\left(x+\frac{3}{4}\right)^{2}=\frac{81}{16}
فیکٹر x^{2}+\frac{3}{2}x+\frac{9}{16}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+\frac{3}{4}=\frac{9}{4} x+\frac{3}{4}=-\frac{9}{4}
سادہ کریں۔
x=\frac{3}{2} x=-3
مساوات کے دونوں اطراف سے \frac{3}{4} منہا کریں۔