x کے لئے حل کریں
x=\frac{\sqrt{66}}{2}-4\approx 0.062019202
x=-\frac{\sqrt{66}}{2}-4\approx -8.062019202
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
2x^{2}+16x-1=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-16±\sqrt{16^{2}-4\times 2\left(-1\right)}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے 16 کو اور c کے لئے -1 کو متبادل کریں۔
x=\frac{-16±\sqrt{256-4\times 2\left(-1\right)}}{2\times 2}
مربع 16۔
x=\frac{-16±\sqrt{256-8\left(-1\right)}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-16±\sqrt{256+8}}{2\times 2}
-8 کو -1 مرتبہ ضرب دیں۔
x=\frac{-16±\sqrt{264}}{2\times 2}
256 کو 8 میں شامل کریں۔
x=\frac{-16±2\sqrt{66}}{2\times 2}
264 کا جذر لیں۔
x=\frac{-16±2\sqrt{66}}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{2\sqrt{66}-16}{4}
جب ± جمع ہو تو اب مساوات x=\frac{-16±2\sqrt{66}}{4} کو حل کریں۔ -16 کو 2\sqrt{66} میں شامل کریں۔
x=\frac{\sqrt{66}}{2}-4
-16+2\sqrt{66} کو 4 سے تقسیم کریں۔
x=\frac{-2\sqrt{66}-16}{4}
جب ± منفی ہو تو اب مساوات x=\frac{-16±2\sqrt{66}}{4} کو حل کریں۔ 2\sqrt{66} کو -16 میں سے منہا کریں۔
x=-\frac{\sqrt{66}}{2}-4
-16-2\sqrt{66} کو 4 سے تقسیم کریں۔
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
مساوات اب حل ہو گئی ہے۔
2x^{2}+16x-1=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
2x^{2}+16x-1-\left(-1\right)=-\left(-1\right)
مساوات کے دونوں اطراف سے 1 کو شامل کریں۔
2x^{2}+16x=-\left(-1\right)
-1 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
2x^{2}+16x=1
-1 کو 0 میں سے منہا کریں۔
\frac{2x^{2}+16x}{2}=\frac{1}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{16}{2}x=\frac{1}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}+8x=\frac{1}{2}
16 کو 2 سے تقسیم کریں۔
x^{2}+8x+4^{2}=\frac{1}{2}+4^{2}
2 سے 4 حاصل کرنے کے لیے، 8 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر 4 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}+8x+16=\frac{1}{2}+16
مربع 4۔
x^{2}+8x+16=\frac{33}{2}
\frac{1}{2} کو 16 میں شامل کریں۔
\left(x+4\right)^{2}=\frac{33}{2}
فیکٹر x^{2}+8x+16۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x+4\right)^{2}}=\sqrt{\frac{33}{2}}
مساوات کی دونوں اطراف کا جذر لیں۔
x+4=\frac{\sqrt{66}}{2} x+4=-\frac{\sqrt{66}}{2}
سادہ کریں۔
x=\frac{\sqrt{66}}{2}-4 x=-\frac{\sqrt{66}}{2}-4
مساوات کے دونوں اطراف سے 4 منہا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}