x کے لئے حل کریں
x=4
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
16-8x+x^{2}=0
دونوں اطراف میں x^{2} شامل کریں۔
x^{2}-8x+16=0
معیاری وضع میں ڈالنے کیلئے پالینامیئل کو پھر ترتیب دیں۔ اصطلاحات کو سب سے زیادہ سے کم ترین پاور کے لحاظ سے ترتیب دیں۔
a+b=-8 ab=16
مساوات حل کرنے کیلئے، فیکٹر x^{2}-8x+16 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,-16 -2,-8 -4,-4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 16 ہوتا ہے۔
-1-16=-17 -2-8=-10 -4-4=-8
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=-4
حل ایک جوڑا ہے جو میزان -8 دیتا ہے۔
\left(x-4\right)\left(x-4\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
\left(x-4\right)^{2}
دو رقمی مربع کے طور پر دوبارہ لکھیں۔
x=4
مساوات کا حل تلاش کرنے کیلئے، x-4=0 حل کریں۔
16-8x+x^{2}=0
دونوں اطراف میں x^{2} شامل کریں۔
x^{2}-8x+16=0
معیاری وضع میں ڈالنے کیلئے پالینامیئل کو پھر ترتیب دیں۔ اصطلاحات کو سب سے زیادہ سے کم ترین پاور کے لحاظ سے ترتیب دیں۔
a+b=-8 ab=1\times 16=16
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx+16 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,-16 -2,-8 -4,-4
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 16 ہوتا ہے۔
-1-16=-17 -2-8=-10 -4-4=-8
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-4 b=-4
حل ایک جوڑا ہے جو میزان -8 دیتا ہے۔
\left(x^{2}-4x\right)+\left(-4x+16\right)
x^{2}-8x+16 کو بطور \left(x^{2}-4x\right)+\left(-4x+16\right) دوبارہ تحریر کریں۔
x\left(x-4\right)-4\left(x-4\right)
پہلے گروپ میں x اور دوسرے میں -4 اجزائے ضربی میں تقسیم کریں۔
\left(x-4\right)\left(x-4\right)
عام اصطلاح x-4 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
\left(x-4\right)^{2}
دو رقمی مربع کے طور پر دوبارہ لکھیں۔
x=4
مساوات کا حل تلاش کرنے کیلئے، x-4=0 حل کریں۔
16-8x+x^{2}=0
دونوں اطراف میں x^{2} شامل کریں۔
x^{2}-8x+16=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -8 کو اور c کے لئے 16 کو متبادل کریں۔
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
مربع -8۔
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
-4 کو 16 مرتبہ ضرب دیں۔
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
64 کو -64 میں شامل کریں۔
x=-\frac{-8}{2}
0 کا جذر لیں۔
x=\frac{8}{2}
-8 کا مُخالف 8 ہے۔
x=4
8 کو 2 سے تقسیم کریں۔
16-8x+x^{2}=0
دونوں اطراف میں x^{2} شامل کریں۔
-8x+x^{2}=-16
16 کو دونوں طرف سے منہا کریں۔ کوئی بھی چیز صفر میں سے تفریق ہوکر اپنا نفی دیتی ہے۔
x^{2}-8x=-16
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
2 سے -4 حاصل کرنے کے لیے، -8 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -4 کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-8x+16=-16+16
مربع -4۔
x^{2}-8x+16=0
-16 کو 16 میں شامل کریں۔
\left(x-4\right)^{2}=0
فیکٹر x^{2}-8x+16۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
مساوات کی دونوں اطراف کا جذر لیں۔
x-4=0 x-4=0
سادہ کریں۔
x=4 x=4
مساوات کے دونوں اطراف سے 4 کو شامل کریں۔
x=4
مساوات اب حل ہو گئی ہے۔ حل ایک جیسے ہیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}