اہم مواد پر چھوڑ دیں
عنصر
Tick mark Image
جائزہ ليں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

5\left(3x^{2}+5x+2\right)
اجزائے ضربی میں تقسیم کریں 5۔
a+b=5 ab=3\times 2=6
3x^{2}+5x+2 پر غورکریں۔ گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار 3x^{2}+ax+bx+2 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,6 2,3
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b مثبت ہے، a اور b بھی مثبت ہیں۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل 6 ہوتا ہے۔
1+6=7 2+3=5
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=3
حل ایک جوڑا ہے جو میزان 5 دیتا ہے۔
\left(3x^{2}+2x\right)+\left(3x+2\right)
3x^{2}+5x+2 کو بطور \left(3x^{2}+2x\right)+\left(3x+2\right) دوبارہ تحریر کریں۔
x\left(3x+2\right)+3x+2
3x^{2}+2x میں x اجزائے ضربی میں تقسیم کریں۔
\left(3x+2\right)\left(x+1\right)
عام اصطلاح 3x+2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
5\left(3x+2\right)\left(x+1\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
15x^{2}+25x+10=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-25±\sqrt{25^{2}-4\times 15\times 10}}{2\times 15}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-25±\sqrt{625-4\times 15\times 10}}{2\times 15}
مربع 25۔
x=\frac{-25±\sqrt{625-60\times 10}}{2\times 15}
-4 کو 15 مرتبہ ضرب دیں۔
x=\frac{-25±\sqrt{625-600}}{2\times 15}
-60 کو 10 مرتبہ ضرب دیں۔
x=\frac{-25±\sqrt{25}}{2\times 15}
625 کو -600 میں شامل کریں۔
x=\frac{-25±5}{2\times 15}
25 کا جذر لیں۔
x=\frac{-25±5}{30}
2 کو 15 مرتبہ ضرب دیں۔
x=-\frac{20}{30}
جب ± جمع ہو تو اب مساوات x=\frac{-25±5}{30} کو حل کریں۔ -25 کو 5 میں شامل کریں۔
x=-\frac{2}{3}
10 کو اخذ اور منسوخ کرتے ہوئے \frac{-20}{30} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=-\frac{30}{30}
جب ± منفی ہو تو اب مساوات x=\frac{-25±5}{30} کو حل کریں۔ 5 کو -25 میں سے منہا کریں۔
x=-1
-30 کو 30 سے تقسیم کریں۔
15x^{2}+25x+10=15\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل -\frac{2}{3} اور x_{2} کے متبادل -1 رکھیں۔
15x^{2}+25x+10=15\left(x+\frac{2}{3}\right)\left(x+1\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
15x^{2}+25x+10=15\times \frac{3x+2}{3}\left(x+1\right)
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{2}{3} کو x میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
15x^{2}+25x+10=5\left(3x+2\right)\left(x+1\right)
15 اور 3 میں عظیم عام عامل 3 کو منسوخ کریں۔