اہم مواد پر چھوڑ دیں
x کے لئے حل کریں (complex solution)
Tick mark Image
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
\left(2x-1\right)^{3} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} استعمال کریں۔
1000x^{3}-1500x^{2}+750x-125+2=66
125 کو ایک سے 8x^{3}-12x^{2}+6x-1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
1000x^{3}-1500x^{2}+750x-123=66
-123 حاصل کرنے کے لئے -125 اور 2 شامل کریں۔
1000x^{3}-1500x^{2}+750x-123-66=0
66 کو دونوں طرف سے منہا کریں۔
1000x^{3}-1500x^{2}+750x-189=0
-189 حاصل کرنے کے لئے -123 کو 66 سے تفریق کریں۔
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
ریشنل جذر تھیورم کے ذریعے، پولی نومیل کے تمام ریشنل جذر \frac{p}{q} کی شکل میں ہوتے ہیں، جہاں p کی مسلسل رکن -189 کو تقسیم کرتا ہے اور q معروف عددی سر 1000 کو تقسیم کرتا ہے۔ تمام امیدواروں کی فہرست بنائیں \frac{p}{q}۔
x=\frac{9}{10}
تمام اجزائے ضربی آزما کر ایک ایسا جزر تلاش کریں، جو مطلق قدر سے سب سے چھوٹی سے شروع ہوتا ہے۔ اگر کوئی سالم عدد کا جزر نہ ملے تو کسروں کو آزمائیں۔
100x^{2}-60x+21=0
جزو ضربی تھیورم سے، ہر جذر k کیلئے x-k پولی نامیل کا جزو ضربی ہے۔ 100x^{2}-60x+21 حاصل کرنے کے لئے 1000x^{3}-1500x^{2}+750x-189 کو 10\left(x-\frac{9}{10}\right)=10x-9 سے تقسیم کریں۔ اس مساوات کو حل کریں جہاں نتیجہ 0 کے برابر ہے۔
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
ax^{2}+bx+c=0 کی تمام مساوات کو مربعى فارمولا: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کا استعمال کرکے حل کیا جاسکتا ہے۔ مربعى فارمولا میں a کے لیے متبادل 100، b کے لیے متبادل -60، اور c کے لیے متبادل 21 ہے۔
x=\frac{60±\sqrt{-4800}}{200}
حسابات کریں۔
x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
مساوات 100x^{2}-60x+21=0 کو حل کریں جہاں ± جمع ہے اور ± تفریق ہے۔
x=\frac{9}{10} x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
حاصل شدہ تمام حلوں کی فہرست بنائیں۔
125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
\left(2x-1\right)^{3} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} استعمال کریں۔
1000x^{3}-1500x^{2}+750x-125+2=66
125 کو ایک سے 8x^{3}-12x^{2}+6x-1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
1000x^{3}-1500x^{2}+750x-123=66
-123 حاصل کرنے کے لئے -125 اور 2 شامل کریں۔
1000x^{3}-1500x^{2}+750x-123-66=0
66 کو دونوں طرف سے منہا کریں۔
1000x^{3}-1500x^{2}+750x-189=0
-189 حاصل کرنے کے لئے -123 کو 66 سے تفریق کریں۔
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
ریشنل جذر تھیورم کے ذریعے، پولی نومیل کے تمام ریشنل جذر \frac{p}{q} کی شکل میں ہوتے ہیں، جہاں p کی مسلسل رکن -189 کو تقسیم کرتا ہے اور q معروف عددی سر 1000 کو تقسیم کرتا ہے۔ تمام امیدواروں کی فہرست بنائیں \frac{p}{q}۔
x=\frac{9}{10}
تمام اجزائے ضربی آزما کر ایک ایسا جزر تلاش کریں، جو مطلق قدر سے سب سے چھوٹی سے شروع ہوتا ہے۔ اگر کوئی سالم عدد کا جزر نہ ملے تو کسروں کو آزمائیں۔
100x^{2}-60x+21=0
جزو ضربی تھیورم سے، ہر جذر k کیلئے x-k پولی نامیل کا جزو ضربی ہے۔ 100x^{2}-60x+21 حاصل کرنے کے لئے 1000x^{3}-1500x^{2}+750x-189 کو 10\left(x-\frac{9}{10}\right)=10x-9 سے تقسیم کریں۔ اس مساوات کو حل کریں جہاں نتیجہ 0 کے برابر ہے۔
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
ax^{2}+bx+c=0 کی تمام مساوات کو مربعى فارمولا: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کا استعمال کرکے حل کیا جاسکتا ہے۔ مربعى فارمولا میں a کے لیے متبادل 100، b کے لیے متبادل -60، اور c کے لیے متبادل 21 ہے۔
x=\frac{60±\sqrt{-4800}}{200}
حسابات کریں۔
x\in \emptyset
چونکہ اصل قطعہ میں منفی عدد کا جذر المربع واضح نہیں کیا گیا ہے، یہاں کوئی حل نہیں ہیں۔
x=\frac{9}{10}
حاصل شدہ تمام حلوں کی فہرست بنائیں۔