عنصر
x\left(125x+2\right)
جائزہ ليں
x\left(125x+2\right)
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
x\left(125x+2\right)
اجزائے ضربی میں تقسیم کریں x۔
125x^{2}+2x=0
دو درجی متعدد رقمی کو استحالہ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اجزائے ضربی میں تبدیل کیا جا سکتا ہے، جہاں x_{1} اور x_{2} دو درجی مساوات ax^{2}+bx+c=0 کے حل ہیں۔
x=\frac{-2±\sqrt{2^{2}}}{2\times 125}
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-2±2}{2\times 125}
2^{2} کا جذر لیں۔
x=\frac{-2±2}{250}
2 کو 125 مرتبہ ضرب دیں۔
x=\frac{0}{250}
جب ± جمع ہو تو اب مساوات x=\frac{-2±2}{250} کو حل کریں۔ -2 کو 2 میں شامل کریں۔
x=0
0 کو 250 سے تقسیم کریں۔
x=-\frac{4}{250}
جب ± منفی ہو تو اب مساوات x=\frac{-2±2}{250} کو حل کریں۔ 2 کو -2 میں سے منہا کریں۔
x=-\frac{2}{125}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-4}{250} کسر کو کم تر اصطلاحات تک گھٹائیں۔
125x^{2}+2x=125x\left(x-\left(-\frac{2}{125}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) کا استعمال کر کے اصل اظہار کو اجزائے ضربی میں بدلیں۔ x_{1} کے متبادل 0 اور x_{2} کے متبادل -\frac{2}{125} رکھیں۔
125x^{2}+2x=125x\left(x+\frac{2}{125}\right)
p-\left(-q\right) سے p+q کے فارم کے تمام اظہارات کو آسان بنائیں۔
125x^{2}+2x=125x\times \frac{125x+2}{125}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{2}{125} کو x میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
125x^{2}+2x=x\left(125x+2\right)
125 اور 125 میں عظیم عام عامل 125 کو منسوخ کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}