عنصر
2y\left(2-x\right)\left(x+3\right)
جائزہ ليں
2y\left(2-x\right)\left(x+3\right)
حصہ
کلپ بورڈ پر کاپی کیا گیا
2\left(6y-xy-x^{2}y\right)
اجزائے ضربی میں تقسیم کریں 2۔
y\left(6-x-x^{2}\right)
6y-xy-x^{2}y پر غورکریں۔ اجزائے ضربی میں تقسیم کریں y۔
-x^{2}-x+6
6-x-x^{2} پر غورکریں۔ معیاری وضع میں ڈالنے کیلئے پالینامیئل کو پھر ترتیب دیں۔ اصطلاحات کو سب سے زیادہ سے کم ترین پاور کے لحاظ سے ترتیب دیں۔
a+b=-1 ab=-6=-6
گروپنگ کرکے اظہار فیکٹر کریں۔ پہلے، اظہار -x^{2}+ax+bx+6 کے طور پر دوبارہ لکھنے کی ضرورت ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-6 2,-3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
1-6=-5 2-3=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=2 b=-3
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(-x^{2}+2x\right)+\left(-3x+6\right)
-x^{2}-x+6 کو بطور \left(-x^{2}+2x\right)+\left(-3x+6\right) دوبارہ تحریر کریں۔
x\left(-x+2\right)+3\left(-x+2\right)
پہلے گروپ میں x اور دوسرے میں 3 اجزائے ضربی میں تقسیم کریں۔
\left(-x+2\right)\left(x+3\right)
عام اصطلاح -x+2 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
2y\left(-x+2\right)\left(x+3\right)
مکمل منقسم شدہ اظہار کو دوبارہ لکھیں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}