k کے لئے حل کریں (complex solution)
\left\{\begin{matrix}\\k=\frac{5}{9}\approx 0.555555556\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
m کے لئے حل کریں (complex solution)
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&k=\frac{5}{9}\end{matrix}\right.
k کے لئے حل کریں
\left\{\begin{matrix}\\k=\frac{5}{9}\approx 0.555555556\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
m کے لئے حل کریں
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&k=\frac{5}{9}\end{matrix}\right.
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{9m}{5}k=m
مساوات معیاری وضع میں ہے۔
\frac{5\times \frac{9m}{5}k}{9m}=\frac{5m}{9m}
1.8m سے دونوں اطراف کو تقسیم کریں۔
k=\frac{5m}{9m}
1.8m سے تقسیم کرنا 1.8m سے ضرب کو کالعدم کرتا ہے۔
k=\frac{5}{9}
m کو 1.8m سے تقسیم کریں۔
1.8km-m=0
m کو دونوں طرف سے منہا کریں۔
\left(1.8k-1\right)m=0
m پر مشتمل تمام اصطلاحات کو یکجا کریں۔
\left(\frac{9k}{5}-1\right)m=0
مساوات معیاری وضع میں ہے۔
m=0
0 کو -1+1.8k سے تقسیم کریں۔
\frac{9m}{5}k=m
مساوات معیاری وضع میں ہے۔
\frac{5\times \frac{9m}{5}k}{9m}=\frac{5m}{9m}
1.8m سے دونوں اطراف کو تقسیم کریں۔
k=\frac{5m}{9m}
1.8m سے تقسیم کرنا 1.8m سے ضرب کو کالعدم کرتا ہے۔
k=\frac{5}{9}
m کو 1.8m سے تقسیم کریں۔
1.8km-m=0
m کو دونوں طرف سے منہا کریں۔
\left(1.8k-1\right)m=0
m پر مشتمل تمام اصطلاحات کو یکجا کریں۔
\left(\frac{9k}{5}-1\right)m=0
مساوات معیاری وضع میں ہے۔
m=0
0 کو -1+1.8k سے تقسیم کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}