عنصر
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
جائزہ ليں
c^{23}+1
حصہ
کلپ بورڈ پر کاپی کیا گیا
c^{23}+1
ایک جیسی اصطلاحات کو ضرب کریں اور یکجا کریں۔
\left(c+1\right)\left(c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1\right)
ریشنل جذر تھیورم کے ذریعے، پولی نومیل کے تمام ریشنل جذر \frac{p}{q} کی شکل میں ہوتے ہیں، جہاں p کی مسلسل رکن 1 کو تقسیم کرتا ہے اور q معروف عددی سر 1 کو تقسیم کرتا ہے۔ اس طرح کا ایک -1 جذر ہے۔ اسے c+1 سے تقسیم کر کے پولی نامیل اظہار کو منقسم کریں۔ کثیر رقمی c^{22}-c^{21}+c^{20}-c^{19}+c^{18}-c^{17}+c^{16}-c^{15}+c^{14}-c^{13}+c^{12}-c^{11}+c^{10}-c^{9}+c^{8}-c^{7}+c^{6}-c^{5}+c^{4}-c^{3}+c^{2}-c+1 منقسم شدہ نہیں ہے جبکہ اس کی کوئی ناطق جذر نہیں ہیں۔
1+c^{23}
2 کی 1 پاور کا حساب کریں اور 1 حاصل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}