اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

a+b=1 ab=-6=-6
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو -x^{2}+ax+bx+6 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,6 -2,3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
-1+6=5 -2+3=1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=3 b=-2
حل ایک جوڑا ہے جو میزان 1 دیتا ہے۔
\left(-x^{2}+3x\right)+\left(-2x+6\right)
-x^{2}+x+6 کو بطور \left(-x^{2}+3x\right)+\left(-2x+6\right) دوبارہ تحریر کریں۔
-x\left(x-3\right)-2\left(x-3\right)
پہلے گروپ میں -x اور دوسرے میں -2 اجزائے ضربی میں تقسیم کریں۔
\left(x-3\right)\left(-x-2\right)
عام اصطلاح x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=3 x=-2
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور -x-2=0 حل کریں۔
-x^{2}+x+6=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے -1 کو، b کے لئے 1 کو اور c کے لئے 6 کو متبادل کریں۔
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
مربع 1۔
x=\frac{-1±\sqrt{1+4\times 6}}{2\left(-1\right)}
-4 کو -1 مرتبہ ضرب دیں۔
x=\frac{-1±\sqrt{1+24}}{2\left(-1\right)}
4 کو 6 مرتبہ ضرب دیں۔
x=\frac{-1±\sqrt{25}}{2\left(-1\right)}
1 کو 24 میں شامل کریں۔
x=\frac{-1±5}{2\left(-1\right)}
25 کا جذر لیں۔
x=\frac{-1±5}{-2}
2 کو -1 مرتبہ ضرب دیں۔
x=\frac{4}{-2}
جب ± جمع ہو تو اب مساوات x=\frac{-1±5}{-2} کو حل کریں۔ -1 کو 5 میں شامل کریں۔
x=-2
4 کو -2 سے تقسیم کریں۔
x=-\frac{6}{-2}
جب ± منفی ہو تو اب مساوات x=\frac{-1±5}{-2} کو حل کریں۔ 5 کو -1 میں سے منہا کریں۔
x=3
-6 کو -2 سے تقسیم کریں۔
x=-2 x=3
مساوات اب حل ہو گئی ہے۔
-x^{2}+x+6=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
-x^{2}+x+6-6=-6
مساوات کے دونوں اطراف سے 6 منہا کریں۔
-x^{2}+x=-6
6 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
\frac{-x^{2}+x}{-1}=-\frac{6}{-1}
-1 سے دونوں اطراف کو تقسیم کریں۔
x^{2}+\frac{1}{-1}x=-\frac{6}{-1}
-1 سے تقسیم کرنا -1 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-x=-\frac{6}{-1}
1 کو -1 سے تقسیم کریں۔
x^{2}-x=6
-6 کو -1 سے تقسیم کریں۔
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
2 سے -\frac{1}{2} حاصل کرنے کے لیے، -1 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{2} کو مربع کریں۔
x^{2}-x+\frac{1}{4}=\frac{25}{4}
6 کو \frac{1}{4} میں شامل کریں۔
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
فیکٹر x^{2}-x+\frac{1}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
سادہ کریں۔
x=3 x=-2
مساوات کے دونوں اطراف سے \frac{1}{2} کو شامل کریں۔