اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

12-7x+x^{2}=12
4-x کو ایک سے 3-x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
12-7x+x^{2}-12=0
12 کو دونوں طرف سے منہا کریں۔
-7x+x^{2}=0
0 حاصل کرنے کے لئے 12 کو 12 سے تفریق کریں۔
x^{2}-7x=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -7 کو اور c کے لئے 0 کو متبادل کریں۔
x=\frac{-\left(-7\right)±7}{2}
\left(-7\right)^{2} کا جذر لیں۔
x=\frac{7±7}{2}
-7 کا مُخالف 7 ہے۔
x=\frac{14}{2}
جب ± جمع ہو تو اب مساوات x=\frac{7±7}{2} کو حل کریں۔ 7 کو 7 میں شامل کریں۔
x=7
14 کو 2 سے تقسیم کریں۔
x=\frac{0}{2}
جب ± منفی ہو تو اب مساوات x=\frac{7±7}{2} کو حل کریں۔ 7 کو 7 میں سے منہا کریں۔
x=0
0 کو 2 سے تقسیم کریں۔
x=7 x=0
مساوات اب حل ہو گئی ہے۔
12-7x+x^{2}=12
4-x کو ایک سے 3-x ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
-7x+x^{2}=12-12
12 کو دونوں طرف سے منہا کریں۔
-7x+x^{2}=0
0 حاصل کرنے کے لئے 12 کو 12 سے تفریق کریں۔
x^{2}-7x=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
2 سے -\frac{7}{2} حاصل کرنے کے لیے، -7 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{7}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-7x+\frac{49}{4}=\frac{49}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{7}{2} کو مربع کریں۔
\left(x-\frac{7}{2}\right)^{2}=\frac{49}{4}
فیکٹر x^{2}-7x+\frac{49}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{7}{2}=\frac{7}{2} x-\frac{7}{2}=-\frac{7}{2}
سادہ کریں۔
x=7 x=0
مساوات کے دونوں اطراف سے \frac{7}{2} کو شامل کریں۔