اہم مواد پر چھوڑ دیں
جائزہ ليں
Tick mark Image
w.r.t. x میں فرق کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2}
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 12x^{2} کو \frac{x-2}{x-2} مرتبہ ضرب دیں۔
\frac{12x^{2}\left(x-2\right)-1}{x-2}
چونکہ \frac{12x^{2}\left(x-2\right)}{x-2} اور \frac{1}{x-2} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{12x^{3}-24x^{2}-1}{x-2}
12x^{2}\left(x-2\right)-1 میں ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2})
اظہارات شامل یا منہا کرنے کے لئے، ان کے ایک جیسے ڈینومینیٹرز بنانے کے لئے ان میں توسیع کریں۔ 12x^{2} کو \frac{x-2}{x-2} مرتبہ ضرب دیں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)-1}{x-2})
چونکہ \frac{12x^{2}\left(x-2\right)}{x-2} اور \frac{1}{x-2} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے تفریق کرکے تفریق کریں۔
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{3}-24x^{2}-1}{x-2})
12x^{2}\left(x-2\right)-1 میں ضرب دیں۔
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(12x^{3}-24x^{2}-1)-\left(12x^{3}-24x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
کسی بھی دو مختلف عوامل کے لیے، دو عوامل کے مخلوط کے مشتق ڈینومینیٹر مرتبہ نومیریٹر کا مشتق نیومیریٹر مرتبہ ڈینومینیٹر کا مشتق ہے، تمام کے تمام مربع کیئے گئے ڈینومیل سے تقسیم کیئے گئے ہیں۔
\frac{\left(x^{1}-2\right)\left(3\times 12x^{3-1}+2\left(-24\right)x^{2-1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{1-1}}{\left(x^{1}-2\right)^{2}}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
\frac{\left(x^{1}-2\right)\left(36x^{2}-48x^{1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
سادہ کریں۔
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
x^{1}-2 کو 36x^{2}-48x^{1} مرتبہ ضرب دیں۔
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}x^{0}-24x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
12x^{3}-24x^{2}-1 کو x^{0} مرتبہ ضرب دیں۔
\frac{36x^{1+2}-48x^{1+1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
\frac{36x^{3}-48x^{2}-72x^{2}+96x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
سادہ کریں۔
\frac{24x^{3}-24x^{2}-72x^{2}+96x^{1}-\left(-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
ایک جیسی اصطلاحات یکجا کریں۔
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-x^{0}\right)}{\left(x-2\right)^{2}}
کسی بھی اصطلاح کے لئے t، t^{1}=t۔
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-1\right)}{\left(x-2\right)^{2}}
کسی بھی اصطلاح t کے لئے سوائے 0، t^{0}=1۔