x کے لئے حل کریں
x=18
x=-6
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
x^{2}-12x+36=144
\left(x-6\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
x^{2}-12x+36-144=0
144 کو دونوں طرف سے منہا کریں۔
x^{2}-12x-108=0
-108 حاصل کرنے کے لئے 36 کو 144 سے تفریق کریں۔
a+b=-12 ab=-108
مساوات حل کرنے کیلئے، فیکٹر x^{2}-12x-108 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -108 ہوتا ہے۔
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-18 b=6
حل ایک جوڑا ہے جو میزان -12 دیتا ہے۔
\left(x-18\right)\left(x+6\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=18 x=-6
مساوات کا حل تلاش کرنے کیلئے، x-18=0 اور x+6=0 حل کریں۔
x^{2}-12x+36=144
\left(x-6\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
x^{2}-12x+36-144=0
144 کو دونوں طرف سے منہا کریں۔
x^{2}-12x-108=0
-108 حاصل کرنے کے لئے 36 کو 144 سے تفریق کریں۔
a+b=-12 ab=1\left(-108\right)=-108
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-108 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -108 ہوتا ہے۔
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-18 b=6
حل ایک جوڑا ہے جو میزان -12 دیتا ہے۔
\left(x^{2}-18x\right)+\left(6x-108\right)
x^{2}-12x-108 کو بطور \left(x^{2}-18x\right)+\left(6x-108\right) دوبارہ تحریر کریں۔
x\left(x-18\right)+6\left(x-18\right)
پہلے گروپ میں x اور دوسرے میں 6 اجزائے ضربی میں تقسیم کریں۔
\left(x-18\right)\left(x+6\right)
عام اصطلاح x-18 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=18 x=-6
مساوات کا حل تلاش کرنے کیلئے، x-18=0 اور x+6=0 حل کریں۔
x^{2}-12x+36=144
\left(x-6\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
x^{2}-12x+36-144=0
144 کو دونوں طرف سے منہا کریں۔
x^{2}-12x-108=0
-108 حاصل کرنے کے لئے 36 کو 144 سے تفریق کریں۔
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-108\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -12 کو اور c کے لئے -108 کو متبادل کریں۔
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-108\right)}}{2}
مربع -12۔
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2}
-4 کو -108 مرتبہ ضرب دیں۔
x=\frac{-\left(-12\right)±\sqrt{576}}{2}
144 کو 432 میں شامل کریں۔
x=\frac{-\left(-12\right)±24}{2}
576 کا جذر لیں۔
x=\frac{12±24}{2}
-12 کا مُخالف 12 ہے۔
x=\frac{36}{2}
جب ± جمع ہو تو اب مساوات x=\frac{12±24}{2} کو حل کریں۔ 12 کو 24 میں شامل کریں۔
x=18
36 کو 2 سے تقسیم کریں۔
x=-\frac{12}{2}
جب ± منفی ہو تو اب مساوات x=\frac{12±24}{2} کو حل کریں۔ 24 کو 12 میں سے منہا کریں۔
x=-6
-12 کو 2 سے تقسیم کریں۔
x=18 x=-6
مساوات اب حل ہو گئی ہے۔
\sqrt{\left(x-6\right)^{2}}=\sqrt{144}
مساوات کی دونوں اطراف کا جذر لیں۔
x-6=12 x-6=-12
سادہ کریں۔
x=18 x=-6
مساوات کے دونوں اطراف سے 6 کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}