اہم مواد پر چھوڑ دیں
جائزہ ليں
Tick mark Image
w.r.t. q میں فرق کریں
Tick mark Image

ویب سرچ سے اسی طرح کے مسائل

حصہ

\left(q^{4}\right)^{2}
اظہار کو آسان بنانے کے لیے قوتوں کے قواعد استعمال کریں۔
q^{4\times 2}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔
q^{8}
4 کو 2 مرتبہ ضرب دیں۔
2\left(q^{4}\right)^{2-1}\frac{\mathrm{d}}{\mathrm{d}q}(q^{4})
اگر F دو قابل امتیاز افعال f\left(u\right) اور u=g\left(x\right) کا اجزاء ہے، یعنی F\left(x\right)=f\left(g\left(x\right)\right) پھر F کا مشتق f کا مشتق ہے u کے اعتبار سے g کا مشتق x کے اعتبار سے \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) کا مشتق ہے۔
2\left(q^{4}\right)^{1}\times 4q^{4-1}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
8q^{3}\left(q^{4}\right)^{1}
سادہ کریں۔
8q^{3}q^{4}
کسی بھی اصطلاح کے لئے t، t^{1}=t۔