اہم مواد پر چھوڑ دیں
جائزہ ليں
Tick mark Image
w.r.t. a میں فرق کریں
Tick mark Image

ویب سرچ سے اسی طرح کے مسائل

حصہ

64^{-\frac{1}{6}}\left(a^{24}\right)^{-\frac{1}{6}}
\left(64a^{24}\right)^{-\frac{1}{6}} کو وسیع کریں۔
64^{-\frac{1}{6}}a^{-4}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ -4 حاصل کرنے کے لئے 24 اور -\frac{1}{6} کو ضرب دیں۔
\frac{1}{2}a^{-4}
-\frac{1}{6} کی 64 پاور کا حساب کریں اور \frac{1}{2} حاصل کریں۔
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{1}{6}-1}\frac{\mathrm{d}}{\mathrm{d}a}(64a^{24})
اگر F دو قابل امتیاز افعال f\left(u\right) اور u=g\left(x\right) کا اجزاء ہے، یعنی F\left(x\right)=f\left(g\left(x\right)\right) پھر F کا مشتق f کا مشتق ہے u کے اعتبار سے g کا مشتق x کے اعتبار سے \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) کا مشتق ہے۔
-\frac{1}{6}\times \left(64a^{24}\right)^{-\frac{7}{6}}\times 24\times 64a^{24-1}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
-256a^{23}\times \left(64a^{24}\right)^{-\frac{7}{6}}
سادہ کریں۔