اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

2x^{2}-x-3=3
2x-3 کو ایک سے x+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
2x^{2}-x-3-3=0
3 کو دونوں طرف سے منہا کریں۔
2x^{2}-x-6=0
-6 حاصل کرنے کے لئے -3 کو 3 سے تفریق کریں۔
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 2 کو، b کے لئے -1 کو اور c کے لئے -6 کو متبادل کریں۔
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
-4 کو 2 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
-8 کو -6 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
1 کو 48 میں شامل کریں۔
x=\frac{-\left(-1\right)±7}{2\times 2}
49 کا جذر لیں۔
x=\frac{1±7}{2\times 2}
-1 کا مُخالف 1 ہے۔
x=\frac{1±7}{4}
2 کو 2 مرتبہ ضرب دیں۔
x=\frac{8}{4}
جب ± جمع ہو تو اب مساوات x=\frac{1±7}{4} کو حل کریں۔ 1 کو 7 میں شامل کریں۔
x=2
8 کو 4 سے تقسیم کریں۔
x=-\frac{6}{4}
جب ± منفی ہو تو اب مساوات x=\frac{1±7}{4} کو حل کریں۔ 7 کو 1 میں سے منہا کریں۔
x=-\frac{3}{2}
2 کو اخذ اور منسوخ کرتے ہوئے \frac{-6}{4} کسر کو کم تر اصطلاحات تک گھٹائیں۔
x=2 x=-\frac{3}{2}
مساوات اب حل ہو گئی ہے۔
2x^{2}-x-3=3
2x-3 کو ایک سے x+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
2x^{2}-x=3+3
دونوں اطراف میں 3 شامل کریں۔
2x^{2}-x=6
6 حاصل کرنے کے لئے 3 اور 3 شامل کریں۔
\frac{2x^{2}-x}{2}=\frac{6}{2}
2 سے دونوں اطراف کو تقسیم کریں۔
x^{2}-\frac{1}{2}x=\frac{6}{2}
2 سے تقسیم کرنا 2 سے ضرب کو کالعدم کرتا ہے۔
x^{2}-\frac{1}{2}x=3
6 کو 2 سے تقسیم کریں۔
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
2 سے -\frac{1}{4} حاصل کرنے کے لیے، -\frac{1}{2} کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{4} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{4} کو مربع کریں۔
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
3 کو \frac{1}{16} میں شامل کریں۔
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
فیکٹر x^{2}-\frac{1}{2}x+\frac{1}{16}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
سادہ کریں۔
x=2 x=-\frac{3}{2}
مساوات کے دونوں اطراف سے \frac{1}{4} کو شامل کریں۔