جائزہ ليں
-\frac{b^{3}}{4}+2b^{2}
وسیع کریں
-\frac{b^{3}}{4}+2b^{2}
حصہ
کلپ بورڈ پر کاپی کیا گیا
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(2a^{2}+b\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} استعمال کریں۔
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(-2a^{2}\right)^{2} کو وسیع کریں۔
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
2 کی -2 پاور کا حساب کریں اور 4 حاصل کریں۔
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
8 حاصل کرنے کے لئے 2 اور 4 کو ضرب دیں۔
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
-4a^{4} حاصل کرنے کے لئے 4a^{4} اور -8a^{4} کو یکجا کریں۔
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
\left(\frac{1}{2}b\right)^{2} کو وسیع کریں۔
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
2 کی \frac{1}{2} پاور کا حساب کریں اور \frac{1}{4} حاصل کریں۔
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
ایک ہی بنیاد کی قوتوں کو تقسیم کرنے کے لئے ان کے قوت نما شامل کریں۔ 3 حاصل کرنے کے لئے 1 اور 2 شامل کریں۔
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
\left(2a^{2}-b\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} استعمال کریں۔
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
-\frac{1}{4} حاصل کرنے کے لئے -1 اور \frac{1}{4} کو ضرب دیں۔
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
0 حاصل کرنے کے لئے -4a^{4} اور 4a^{4} کو یکجا کریں۔
b^{2}-\frac{1}{4}b^{3}+b^{2}
0 حاصل کرنے کے لئے 4a^{2}b اور -4a^{2}b کو یکجا کریں۔
2b^{2}-\frac{1}{4}b^{3}
2b^{2} حاصل کرنے کے لئے b^{2} اور b^{2} کو یکجا کریں۔
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(2a^{2}+b\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(p+q\right)^{2}=p^{2}+2pq+q^{2} استعمال کریں۔
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
\left(-2a^{2}\right)^{2} کو وسیع کریں۔
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
2 کی -2 پاور کا حساب کریں اور 4 حاصل کریں۔
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
8 حاصل کرنے کے لئے 2 اور 4 کو ضرب دیں۔
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
-4a^{4} حاصل کرنے کے لئے 4a^{4} اور -8a^{4} کو یکجا کریں۔
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
\left(\frac{1}{2}b\right)^{2} کو وسیع کریں۔
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
2 کی \frac{1}{2} پاور کا حساب کریں اور \frac{1}{4} حاصل کریں۔
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
ایک ہی بنیاد کی قوتوں کو تقسیم کرنے کے لئے ان کے قوت نما شامل کریں۔ 3 حاصل کرنے کے لئے 1 اور 2 شامل کریں۔
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
\left(2a^{2}-b\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(p-q\right)^{2}=p^{2}-2pq+q^{2} استعمال کریں۔
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
-\frac{1}{4} حاصل کرنے کے لئے -1 اور \frac{1}{4} کو ضرب دیں۔
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
0 حاصل کرنے کے لئے -4a^{4} اور 4a^{4} کو یکجا کریں۔
b^{2}-\frac{1}{4}b^{3}+b^{2}
0 حاصل کرنے کے لئے 4a^{2}b اور -4a^{2}b کو یکجا کریں۔
2b^{2}-\frac{1}{4}b^{3}
2b^{2} حاصل کرنے کے لئے b^{2} اور b^{2} کو یکجا کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}