اہم مواد پر چھوڑ دیں
جائزہ ليں
Tick mark Image
w.r.t. a میں فرق کریں
Tick mark Image

ویب سرچ سے اسی طرح کے مسائل

حصہ

16^{-\frac{3}{4}}\left(a^{-4}\right)^{-\frac{3}{4}}
\left(16a^{-4}\right)^{-\frac{3}{4}} کو وسیع کریں۔
16^{-\frac{3}{4}}a^{3}
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 3 حاصل کرنے کے لئے -4 اور -\frac{3}{4} کو ضرب دیں۔
\frac{1}{8}a^{3}
-\frac{3}{4} کی 16 پاور کا حساب کریں اور \frac{1}{8} حاصل کریں۔
-\frac{3}{4}\times \left(16a^{-4}\right)^{-\frac{3}{4}-1}\frac{\mathrm{d}}{\mathrm{d}a}(16a^{-4})
اگر F دو قابل امتیاز افعال f\left(u\right) اور u=g\left(x\right) کا اجزاء ہے، یعنی F\left(x\right)=f\left(g\left(x\right)\right) پھر F کا مشتق f کا مشتق ہے u کے اعتبار سے g کا مشتق x کے اعتبار سے \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) کا مشتق ہے۔
-\frac{3}{4}\times \left(16a^{-4}\right)^{-\frac{7}{4}}\left(-4\right)\times 16a^{-4-1}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
48a^{-5}\times \left(16a^{-4}\right)^{-\frac{7}{4}}
سادہ کریں۔