جائزہ ليں
\frac{t^{2}}{4}
w.r.t. t میں فرق کریں
\frac{t}{2}
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{tt}{4}
بطور واحد کسر \frac{t}{4}t ایکسپریس
\frac{t^{2}}{4}
t^{2} حاصل کرنے کے لئے t اور t کو ضرب دیں۔
\frac{1}{4}t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{1})+t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{4}t^{1})
کسی بھی دو قبل امتیاز افعال کے لیے، دو افعال کی مصنوعہ کا مشتق دوسرے افعال کے مشتق کے مرتبہ کا پہلا فعل ہے، اس کے ساتھ ہی دوسرے فعل کے پہلے کا مشتق ہے۔
\frac{1}{4}t^{1}t^{1-1}+t^{1}\times \frac{1}{4}t^{1-1}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
\frac{1}{4}t^{1}t^{0}+t^{1}\times \frac{1}{4}t^{0}
سادہ کریں۔
\frac{1}{4}t^{1}+\frac{1}{4}t^{1}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
\frac{1+1}{4}t^{1}
ایک جیسی اصطلاحات یکجا کریں۔
\frac{1}{2}t^{1}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{1}{4} کو \frac{1}{4} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
\frac{1}{2}t
کسی بھی اصطلاح کے لئے t، t^{1}=t۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}