x کے لئے حل کریں
x=-2
x=3
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
x^{2}-x-6=0
6 کو دونوں طرف سے منہا کریں۔
a+b=-1 ab=-6
مساوات حل کرنے کیلئے، فیکٹر x^{2}-x-6 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-6 2,-3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
1-6=-5 2-3=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=2
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(x-3\right)\left(x+2\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=3 x=-2
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور x+2=0 حل کریں۔
x^{2}-x-6=0
6 کو دونوں طرف سے منہا کریں۔
a+b=-1 ab=1\left(-6\right)=-6
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-6 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
1,-6 2,-3
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b منفی ہے، منفی عدد میں مثبت سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -6 ہوتا ہے۔
1-6=-5 2-3=-1
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=2
حل ایک جوڑا ہے جو میزان -1 دیتا ہے۔
\left(x^{2}-3x\right)+\left(2x-6\right)
x^{2}-x-6 کو بطور \left(x^{2}-3x\right)+\left(2x-6\right) دوبارہ تحریر کریں۔
x\left(x-3\right)+2\left(x-3\right)
پہلے گروپ میں x اور دوسرے میں 2 اجزائے ضربی میں تقسیم کریں۔
\left(x-3\right)\left(x+2\right)
عام اصطلاح x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=3 x=-2
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور x+2=0 حل کریں۔
x^{2}-x=6
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
x^{2}-x-6=6-6
مساوات کے دونوں اطراف سے 6 منہا کریں۔
x^{2}-x-6=0
6 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -1 کو اور c کے لئے -6 کو متبادل کریں۔
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
-4 کو -6 مرتبہ ضرب دیں۔
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
1 کو 24 میں شامل کریں۔
x=\frac{-\left(-1\right)±5}{2}
25 کا جذر لیں۔
x=\frac{1±5}{2}
-1 کا مُخالف 1 ہے۔
x=\frac{6}{2}
جب ± جمع ہو تو اب مساوات x=\frac{1±5}{2} کو حل کریں۔ 1 کو 5 میں شامل کریں۔
x=3
6 کو 2 سے تقسیم کریں۔
x=-\frac{4}{2}
جب ± منفی ہو تو اب مساوات x=\frac{1±5}{2} کو حل کریں۔ 5 کو 1 میں سے منہا کریں۔
x=-2
-4 کو 2 سے تقسیم کریں۔
x=3 x=-2
مساوات اب حل ہو گئی ہے۔
x^{2}-x=6
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
2 سے -\frac{1}{2} حاصل کرنے کے لیے، -1 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{1}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{1}{2} کو مربع کریں۔
x^{2}-x+\frac{1}{4}=\frac{25}{4}
6 کو \frac{1}{4} میں شامل کریں۔
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
فیکٹر x^{2}-x+\frac{1}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
سادہ کریں۔
x=3 x=-2
مساوات کے دونوں اطراف سے \frac{1}{2} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}