اہم مواد پر چھوڑ دیں
x کے لئے حل کریں (complex solution)
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x^{2}x^{2}+5=x^{2}
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x 0 کے مساوی نہیں ہو سکتا۔ x^{2} سے مساوات کی دونوں اطراف کو ضرب دیں۔
x^{4}+5=x^{2}
ایک ہی بنیاد کی قوتوں کو تقسیم کرنے کے لئے ان کے قوت نما شامل کریں۔ 4 حاصل کرنے کے لئے 2 اور 2 شامل کریں۔
x^{4}+5-x^{2}=0
x^{2} کو دونوں طرف سے منہا کریں۔
t^{2}-t+5=0
x^{2} کیلئے t کو متبادل کریں۔
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 5}}{2}
ax^{2}+bx+c=0 کی تمام مساوات کو مربعى فارمولا: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کا استعمال کرکے حل کیا جاسکتا ہے۔ مربعى فارمولا میں a کے لیے متبادل 1، b کے لیے متبادل -1، اور c کے لیے متبادل 5 ہے۔
t=\frac{1±\sqrt{-19}}{2}
حسابات کریں۔
t=\frac{1+\sqrt{19}i}{2} t=\frac{-\sqrt{19}i+1}{2}
مساوات t=\frac{1±\sqrt{-19}}{2} کو حل کریں جہاں ± جمع ہے اور ± تفریق ہے۔
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}} x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}
x=t^{2} سے، ہر t کیلئے x=±\sqrt{t} کی تشخیص کے ذریعے حل حاصل کئے جاتے ہیں۔
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0
متغیرہ x اقدار 0 کے مساوی نہیں ہو سکتا۔