m کے لئے حل کریں
m=\frac{13+\sqrt{119}i}{2}\approx 6.5+5.454356057i
m=\frac{-\sqrt{119}i+13}{2}\approx 6.5-5.454356057i
حصہ
کلپ بورڈ پر کاپی کیا گیا
m^{2}-13m+72=0
اس فارم ax^{2}+bx+c=0 کی تمام مساواتیں مربعی فارمولہ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} کو استعمال کرتے ہوئے حل کی جاسکتی ہیں۔ مربعی فارمولا دو طرح کے حل فراہم کرتا ہے۔ ایک جب ± جمع شدہ ہوتا ہے اور تب جب یہ منہا کردہ ہوتا ہے۔
m=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 72}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -13 کو اور c کے لئے 72 کو متبادل کریں۔
m=\frac{-\left(-13\right)±\sqrt{169-4\times 72}}{2}
مربع -13۔
m=\frac{-\left(-13\right)±\sqrt{169-288}}{2}
-4 کو 72 مرتبہ ضرب دیں۔
m=\frac{-\left(-13\right)±\sqrt{-119}}{2}
169 کو -288 میں شامل کریں۔
m=\frac{-\left(-13\right)±\sqrt{119}i}{2}
-119 کا جذر لیں۔
m=\frac{13±\sqrt{119}i}{2}
-13 کا مُخالف 13 ہے۔
m=\frac{13+\sqrt{119}i}{2}
جب ± جمع ہو تو اب مساوات m=\frac{13±\sqrt{119}i}{2} کو حل کریں۔ 13 کو i\sqrt{119} میں شامل کریں۔
m=\frac{-\sqrt{119}i+13}{2}
جب ± منفی ہو تو اب مساوات m=\frac{13±\sqrt{119}i}{2} کو حل کریں۔ i\sqrt{119} کو 13 میں سے منہا کریں۔
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
مساوات اب حل ہو گئی ہے۔
m^{2}-13m+72=0
اس قسم کی مربعی قواعد مربع مکمل کرنے کے بعد حل ہوسکتی ہیں۔ مربع کو مکمل کرنے کے لیئے، مساوات کو پہلے اس شکل میں ہونا ضروری ہے x^{2}+bx=c۔
m^{2}-13m+72-72=-72
مساوات کے دونوں اطراف سے 72 منہا کریں۔
m^{2}-13m=-72
72 کے خود سے منہا کرنے پر 0 ہی بچتا ہے۔
m^{2}-13m+\left(-\frac{13}{2}\right)^{2}=-72+\left(-\frac{13}{2}\right)^{2}
2 سے -\frac{13}{2} حاصل کرنے کے لیے، -13 کو x اصطلاح کے کو ایفیشنٹ سے تقسیم کریں۔ پھر -\frac{13}{2} کے مربع کو مساوات کی دونوں جانب جمع کریں۔ یہ مرحلہ مساوات کی بائیں ہاتھ کی جانب کو ایک مکمل مربع بناتا ہے۔
m^{2}-13m+\frac{169}{4}=-72+\frac{169}{4}
کسر کا نیومیریٹر اور ڈینومینیٹر دونوں پر مربع لگا کر -\frac{13}{2} کو مربع کریں۔
m^{2}-13m+\frac{169}{4}=-\frac{119}{4}
-72 کو \frac{169}{4} میں شامل کریں۔
\left(m-\frac{13}{2}\right)^{2}=-\frac{119}{4}
فیکٹر m^{2}-13m+\frac{169}{4}۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(m-\frac{13}{2}\right)^{2}}=\sqrt{-\frac{119}{4}}
مساوات کی دونوں اطراف کا جذر لیں۔
m-\frac{13}{2}=\frac{\sqrt{119}i}{2} m-\frac{13}{2}=-\frac{\sqrt{119}i}{2}
سادہ کریں۔
m=\frac{13+\sqrt{119}i}{2} m=\frac{-\sqrt{119}i+13}{2}
مساوات کے دونوں اطراف سے \frac{13}{2} کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}