اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

x^{2}+2x+1=16
\left(x+1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
x^{2}+2x+1-16=0
16 کو دونوں طرف سے منہا کریں۔
x^{2}+2x-15=0
-15 حاصل کرنے کے لئے 1 کو 16 سے تفریق کریں۔
a+b=2 ab=-15
مساوات حل کرنے کیلئے، فیکٹر x^{2}+2x-15 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,15 -3,5
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -15 ہوتا ہے۔
-1+15=14 -3+5=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=5
حل ایک جوڑا ہے جو میزان 2 دیتا ہے۔
\left(x-3\right)\left(x+5\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=3 x=-5
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور x+5=0 حل کریں۔
x^{2}+2x+1=16
\left(x+1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
x^{2}+2x+1-16=0
16 کو دونوں طرف سے منہا کریں۔
x^{2}+2x-15=0
-15 حاصل کرنے کے لئے 1 کو 16 سے تفریق کریں۔
a+b=2 ab=1\left(-15\right)=-15
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx-15 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
-1,15 -3,5
چونکہ ab منفی ہے، a اور b کی علامت مخالف ہیں۔ چونکہ a+b مثبت ہے، مثبت عدد میں منفی سے زیادہ مطلق قدر ہے۔ ایسے تمام صحیح اعداد کے جوڑے درج کریں جن کا حاصل -15 ہوتا ہے۔
-1+15=14 -3+5=2
ہر جوڑے کی رقم کا حساب لگائیں۔
a=-3 b=5
حل ایک جوڑا ہے جو میزان 2 دیتا ہے۔
\left(x^{2}-3x\right)+\left(5x-15\right)
x^{2}+2x-15 کو بطور \left(x^{2}-3x\right)+\left(5x-15\right) دوبارہ تحریر کریں۔
x\left(x-3\right)+5\left(x-3\right)
پہلے گروپ میں x اور دوسرے میں 5 اجزائے ضربی میں تقسیم کریں۔
\left(x-3\right)\left(x+5\right)
عام اصطلاح x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=3 x=-5
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور x+5=0 حل کریں۔
x^{2}+2x+1=16
\left(x+1\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} استعمال کریں۔
x^{2}+2x+1-16=0
16 کو دونوں طرف سے منہا کریں۔
x^{2}+2x-15=0
-15 حاصل کرنے کے لئے 1 کو 16 سے تفریق کریں۔
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے 2 کو اور c کے لئے -15 کو متبادل کریں۔
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
مربع 2۔
x=\frac{-2±\sqrt{4+60}}{2}
-4 کو -15 مرتبہ ضرب دیں۔
x=\frac{-2±\sqrt{64}}{2}
4 کو 60 میں شامل کریں۔
x=\frac{-2±8}{2}
64 کا جذر لیں۔
x=\frac{6}{2}
جب ± جمع ہو تو اب مساوات x=\frac{-2±8}{2} کو حل کریں۔ -2 کو 8 میں شامل کریں۔
x=3
6 کو 2 سے تقسیم کریں۔
x=-\frac{10}{2}
جب ± منفی ہو تو اب مساوات x=\frac{-2±8}{2} کو حل کریں۔ 8 کو -2 میں سے منہا کریں۔
x=-5
-10 کو 2 سے تقسیم کریں۔
x=3 x=-5
مساوات اب حل ہو گئی ہے۔
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
مساوات کی دونوں اطراف کا جذر لیں۔
x+1=4 x+1=-4
سادہ کریں۔
x=3 x=-5
مساوات کے دونوں اطراف سے 1 منہا کریں۔