اہم مواد پر چھوڑ دیں
x کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

1=\left(x-2\right)\left(x-2\right)
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 0,1,2 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو x\left(x-2\right)\left(x-1\right) سے ضرب دیں، x^{3}-3x^{2}+2x,x\left(x-1\right) کا سب کم سے کم مشترک حاصل ضرب۔
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} حاصل کرنے کے لئے x-2 اور x-2 کو ضرب دیں۔
1=x^{2}-4x+4
\left(x-2\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
x^{2}-4x+4=1
اطراف ادل بدل کریں تاکہ تمام متغیر اصطلاحات بائیں ہاتھ کی جانب ہوں۔
x^{2}-4x+4-1=0
1 کو دونوں طرف سے منہا کریں۔
x^{2}-4x+3=0
3 حاصل کرنے کے لئے 4 کو 1 سے تفریق کریں۔
a+b=-4 ab=3
مساوات حل کرنے کیلئے، فیکٹر x^{2}-4x+3 فالمولہ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) استعمال کر رہا ہے۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=-3 b=-1
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(x-3\right)\left(x-1\right)
حاصل شدہ اقدار کا استعمال کر کے فیکٹر شدہ اظہار \left(x+a\right)\left(x+b\right) دوبارہ لکھیں۔
x=3 x=1
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور x-1=0 حل کریں۔
x=3
متغیرہ x اقدار 1 کے مساوی نہیں ہو سکتا۔
1=\left(x-2\right)\left(x-2\right)
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 0,1,2 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو x\left(x-2\right)\left(x-1\right) سے ضرب دیں، x^{3}-3x^{2}+2x,x\left(x-1\right) کا سب کم سے کم مشترک حاصل ضرب۔
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} حاصل کرنے کے لئے x-2 اور x-2 کو ضرب دیں۔
1=x^{2}-4x+4
\left(x-2\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
x^{2}-4x+4=1
اطراف ادل بدل کریں تاکہ تمام متغیر اصطلاحات بائیں ہاتھ کی جانب ہوں۔
x^{2}-4x+4-1=0
1 کو دونوں طرف سے منہا کریں۔
x^{2}-4x+3=0
3 حاصل کرنے کے لئے 4 کو 1 سے تفریق کریں۔
a+b=-4 ab=1\times 3=3
مساوات حل کرنے کیلئے، گروپنگ کرکے بائیں جانب فیکٹر کریں۔ پہلے، بائیں جانب کو x^{2}+ax+bx+3 بطور دوبارہ لکھنا ہو گا۔ a اور b حاصل کرنے کی غرض سے، حل کرنے کیلئے سسٹم سیٹ کریں۔
a=-3 b=-1
چونکہ ab مثبت ہے، a اور b کی علامت یکساں ہے۔ چونکہ a+b منفی ہے، a اور b بھی منفی ہیں۔ اس طرح کی جوڑی ہی سسٹم کا حل ہے۔
\left(x^{2}-3x\right)+\left(-x+3\right)
x^{2}-4x+3 کو بطور \left(x^{2}-3x\right)+\left(-x+3\right) دوبارہ تحریر کریں۔
x\left(x-3\right)-\left(x-3\right)
پہلے گروپ میں x اور دوسرے میں -1 اجزائے ضربی میں تقسیم کریں۔
\left(x-3\right)\left(x-1\right)
عام اصطلاح x-3 کا منقسم خاصیت استعمال کرتے ہوئے اجزائے ضربی میں تقسیم کریں۔
x=3 x=1
مساوات کا حل تلاش کرنے کیلئے، x-3=0 اور x-1=0 حل کریں۔
x=3
متغیرہ x اقدار 1 کے مساوی نہیں ہو سکتا۔
1=\left(x-2\right)\left(x-2\right)
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 0,1,2 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو x\left(x-2\right)\left(x-1\right) سے ضرب دیں، x^{3}-3x^{2}+2x,x\left(x-1\right) کا سب کم سے کم مشترک حاصل ضرب۔
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} حاصل کرنے کے لئے x-2 اور x-2 کو ضرب دیں۔
1=x^{2}-4x+4
\left(x-2\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
x^{2}-4x+4=1
اطراف ادل بدل کریں تاکہ تمام متغیر اصطلاحات بائیں ہاتھ کی جانب ہوں۔
x^{2}-4x+4-1=0
1 کو دونوں طرف سے منہا کریں۔
x^{2}-4x+3=0
3 حاصل کرنے کے لئے 4 کو 1 سے تفریق کریں۔
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
یہ مساوات معیاری وضع میں ہے: ax^{2}+bx+c=0۔ مربعی فارمولا \frac{-b±\sqrt{b^{2}-4ac}}{2a} میں a کے لئے 1 کو، b کے لئے -4 کو اور c کے لئے 3 کو متبادل کریں۔
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
مربع -4۔
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
-4 کو 3 مرتبہ ضرب دیں۔
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
16 کو -12 میں شامل کریں۔
x=\frac{-\left(-4\right)±2}{2}
4 کا جذر لیں۔
x=\frac{4±2}{2}
-4 کا مُخالف 4 ہے۔
x=\frac{6}{2}
جب ± جمع ہو تو اب مساوات x=\frac{4±2}{2} کو حل کریں۔ 4 کو 2 میں شامل کریں۔
x=3
6 کو 2 سے تقسیم کریں۔
x=\frac{2}{2}
جب ± منفی ہو تو اب مساوات x=\frac{4±2}{2} کو حل کریں۔ 2 کو 4 میں سے منہا کریں۔
x=1
2 کو 2 سے تقسیم کریں۔
x=3 x=1
مساوات اب حل ہو گئی ہے۔
x=3
متغیرہ x اقدار 1 کے مساوی نہیں ہو سکتا۔
1=\left(x-2\right)\left(x-2\right)
جبکہ زیرو کے ساتھ تقسیم واضح نہیں کی گئی ہے تو متغیرہ x اقدار 0,1,2 میں سے کسی کے بھی مساوی نہیں ہو سکتا۔ مساوات کی دونوں اطراف کو x\left(x-2\right)\left(x-1\right) سے ضرب دیں، x^{3}-3x^{2}+2x,x\left(x-1\right) کا سب کم سے کم مشترک حاصل ضرب۔
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} حاصل کرنے کے لئے x-2 اور x-2 کو ضرب دیں۔
1=x^{2}-4x+4
\left(x-2\right)^{2} میں توسیع کے لئے دو رقمى کليہ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} استعمال کریں۔
x^{2}-4x+4=1
اطراف ادل بدل کریں تاکہ تمام متغیر اصطلاحات بائیں ہاتھ کی جانب ہوں۔
\left(x-2\right)^{2}=1
فیکٹر x^{2}-4x+4۔ عمومی طور پر جب x^{2}+bx+c ایک کامل مربع ہوگا تو اسے ہمیشہ \left(x+\frac{b}{2}\right)^{2} کی طرح فیکٹر کیا جا سکتا ہے۔
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
مساوات کی دونوں اطراف کا جذر لیں۔
x-2=1 x-2=-1
سادہ کریں۔
x=3 x=1
مساوات کے دونوں اطراف سے 2 کو شامل کریں۔
x=3
متغیرہ x اقدار 1 کے مساوی نہیں ہو سکتا۔