اہم مواد پر چھوڑ دیں
جائزہ ليں
Tick mark Image
عنصر
Tick mark Image

حصہ

\left(\frac{1}{3}\right)^{8}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
\left(4!\right)^{2} حاصل کرنے کے لئے 4! اور 4! کو ضرب دیں۔
\frac{1}{6561}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8 کی \frac{1}{3} پاور کا حساب کریں اور \frac{1}{6561} حاصل کریں۔
\frac{1}{6561}+\frac{8\times 2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
بطور واحد کسر 8\times \frac{2}{3} ایکسپریس
\frac{1}{6561}+\frac{16}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
16 حاصل کرنے کے لئے 8 اور 2 کو ضرب دیں۔
\frac{1}{6561}+\frac{16}{3}\times \frac{1}{2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
7 کی \frac{1}{3} پاور کا حساب کریں اور \frac{1}{2187} حاصل کریں۔
\frac{1}{6561}+\frac{16\times 1}{3\times 2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{1}{2187} کو \frac{16}{3} مرتبہ ضرب دیں۔
\frac{1}{6561}+\frac{16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
کسر \frac{16\times 1}{3\times 2187} میں ضرب دیں۔
\frac{1+16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
چونکہ \frac{1}{6561} اور \frac{16}{6561} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{17}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
17 حاصل کرنے کے لئے 1 اور 16 شامل کریں۔
\frac{17}{6561}+\frac{40320}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8 کا عامل دار 40320 ہے۔
\frac{17}{6561}+\frac{40320}{720\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
6 کا عامل دار 720 ہے۔
\frac{17}{6561}+\frac{40320}{720\times 2}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
2 کا عامل دار 2 ہے۔
\frac{17}{6561}+\frac{40320}{1440}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
1440 حاصل کرنے کے لئے 720 اور 2 کو ضرب دیں۔
\frac{17}{6561}+28\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
28 حاصل کرنے کے لئے 40320 کو 1440 سے تقسیم کریں۔
\frac{17}{6561}+28\times \frac{4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
2 کی \frac{2}{3} پاور کا حساب کریں اور \frac{4}{9} حاصل کریں۔
\frac{17}{6561}+\frac{28\times 4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
بطور واحد کسر 28\times \frac{4}{9} ایکسپریس
\frac{17}{6561}+\frac{112}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
112 حاصل کرنے کے لئے 28 اور 4 کو ضرب دیں۔
\frac{17}{6561}+\frac{112}{9}\times \frac{1}{729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
6 کی \frac{1}{3} پاور کا حساب کریں اور \frac{1}{729} حاصل کریں۔
\frac{17}{6561}+\frac{112\times 1}{9\times 729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{1}{729} کو \frac{112}{9} مرتبہ ضرب دیں۔
\frac{17}{6561}+\frac{112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
کسر \frac{112\times 1}{9\times 729} میں ضرب دیں۔
\frac{17+112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
چونکہ \frac{17}{6561} اور \frac{112}{6561} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{129}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
129 حاصل کرنے کے لئے 17 اور 112 شامل کریں۔
\frac{43}{2187}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
3 کو اخذ اور منسوخ کرتے ہوئے \frac{129}{6561} کسر کو کم تر اصطلاحات تک گھٹائیں۔
\frac{43}{2187}+\frac{40320}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8 کا عامل دار 40320 ہے۔
\frac{43}{2187}+\frac{40320}{120\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
5 کا عامل دار 120 ہے۔
\frac{43}{2187}+\frac{40320}{120\times 6}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
3 کا عامل دار 6 ہے۔
\frac{43}{2187}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
720 حاصل کرنے کے لئے 120 اور 6 کو ضرب دیں۔
\frac{43}{2187}+56\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
56 حاصل کرنے کے لئے 40320 کو 720 سے تقسیم کریں۔
\frac{43}{2187}+56\times \frac{8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
3 کی \frac{2}{3} پاور کا حساب کریں اور \frac{8}{27} حاصل کریں۔
\frac{43}{2187}+\frac{56\times 8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
بطور واحد کسر 56\times \frac{8}{27} ایکسپریس
\frac{43}{2187}+\frac{448}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
448 حاصل کرنے کے لئے 56 اور 8 کو ضرب دیں۔
\frac{43}{2187}+\frac{448}{27}\times \frac{1}{243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
5 کی \frac{1}{3} پاور کا حساب کریں اور \frac{1}{243} حاصل کریں۔
\frac{43}{2187}+\frac{448\times 1}{27\times 243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{1}{243} کو \frac{448}{27} مرتبہ ضرب دیں۔
\frac{43}{2187}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
کسر \frac{448\times 1}{27\times 243} میں ضرب دیں۔
\frac{129}{6561}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
2187 اور 6561 کا سب سے کم مشترک حاصل ضرب 6561 ہے۔ نسب نما 6561 کے ساتھ \frac{43}{2187} اور \frac{448}{6561} کو کسروں میں بدلیں۔
\frac{129+448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
چونکہ \frac{129}{6561} اور \frac{448}{6561} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{577}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
577 حاصل کرنے کے لئے 129 اور 448 شامل کریں۔
\frac{577}{6561}+\frac{40320}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8 کا عامل دار 40320 ہے۔
\frac{577}{6561}+\frac{40320}{24^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
4 کا عامل دار 24 ہے۔
\frac{577}{6561}+\frac{40320}{576}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
2 کی 24 پاور کا حساب کریں اور 576 حاصل کریں۔
\frac{577}{6561}+70\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
70 حاصل کرنے کے لئے 40320 کو 576 سے تقسیم کریں۔
\frac{577}{6561}+70\times \frac{16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
4 کی \frac{2}{3} پاور کا حساب کریں اور \frac{16}{81} حاصل کریں۔
\frac{577}{6561}+\frac{70\times 16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
بطور واحد کسر 70\times \frac{16}{81} ایکسپریس
\frac{577}{6561}+\frac{1120}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
1120 حاصل کرنے کے لئے 70 اور 16 کو ضرب دیں۔
\frac{577}{6561}+\frac{1120}{81}\times \frac{1}{81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
4 کی \frac{1}{3} پاور کا حساب کریں اور \frac{1}{81} حاصل کریں۔
\frac{577}{6561}+\frac{1120\times 1}{81\times 81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{1}{81} کو \frac{1120}{81} مرتبہ ضرب دیں۔
\frac{577}{6561}+\frac{1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
کسر \frac{1120\times 1}{81\times 81} میں ضرب دیں۔
\frac{577+1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
چونکہ \frac{577}{6561} اور \frac{1120}{6561} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{1697}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
1697 حاصل کرنے کے لئے 577 اور 1120 شامل کریں۔
\frac{1697}{6561}+\frac{40320}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
8 کا عامل دار 40320 ہے۔
\frac{1697}{6561}+\frac{40320}{6\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
3 کا عامل دار 6 ہے۔
\frac{1697}{6561}+\frac{40320}{6\times 120}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
5 کا عامل دار 120 ہے۔
\frac{1697}{6561}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
720 حاصل کرنے کے لئے 6 اور 120 کو ضرب دیں۔
\frac{1697}{6561}+56\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
56 حاصل کرنے کے لئے 40320 کو 720 سے تقسیم کریں۔
\frac{1697}{6561}+56\times \frac{32}{243}\times \left(\frac{1}{3}\right)^{3}
5 کی \frac{2}{3} پاور کا حساب کریں اور \frac{32}{243} حاصل کریں۔
\frac{1697}{6561}+\frac{56\times 32}{243}\times \left(\frac{1}{3}\right)^{3}
بطور واحد کسر 56\times \frac{32}{243} ایکسپریس
\frac{1697}{6561}+\frac{1792}{243}\times \left(\frac{1}{3}\right)^{3}
1792 حاصل کرنے کے لئے 56 اور 32 کو ضرب دیں۔
\frac{1697}{6561}+\frac{1792}{243}\times \frac{1}{27}
3 کی \frac{1}{3} پاور کا حساب کریں اور \frac{1}{27} حاصل کریں۔
\frac{1697}{6561}+\frac{1792\times 1}{243\times 27}
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{1}{27} کو \frac{1792}{243} مرتبہ ضرب دیں۔
\frac{1697}{6561}+\frac{1792}{6561}
کسر \frac{1792\times 1}{243\times 27} میں ضرب دیں۔
\frac{1697+1792}{6561}
چونکہ \frac{1697}{6561} اور \frac{1792}{6561} کا نسب نما یکساں ہے، انہیں ان کے شمار کنندگان کے ذریعے شامل کرکے جمع کریں۔
\frac{3489}{6561}
3489 حاصل کرنے کے لئے 1697 اور 1792 شامل کریں۔
\frac{1163}{2187}
3 کو اخذ اور منسوخ کرتے ہوئے \frac{3489}{6561} کسر کو کم تر اصطلاحات تک گھٹائیں۔