x، y کے لئے حل کریں
x=0
y = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
4x+3y=13,3x+6y=26
متبادل کا استعمال کرتے ہوئے مساواتوں کے جوڑے کو حل کرنے کے لیئے، پہلے کسی ایک متغیر کے لیئے مساواتوں میں سے کسی ایک کو حل کریں۔ پھر اس متغیر کے لیئے نتائج کو کسی دوسری مساوات میں متبادل کریں۔
4x+3y=13
مساوی نشان کی بائیں ہاتھ کی جانب x کو اکیلا کر کے ان مساوات میں سے ایک کا انتخاب کریں اور اسے x کے لئے حل کریں۔
4x=-3y+13
مساوات کے دونوں اطراف سے 3y منہا کریں۔
x=\frac{1}{4}\left(-3y+13\right)
4 سے دونوں اطراف کو تقسیم کریں۔
x=-\frac{3}{4}y+\frac{13}{4}
\frac{1}{4} کو -3y+13 مرتبہ ضرب دیں۔
3\left(-\frac{3}{4}y+\frac{13}{4}\right)+6y=26
دیگر مساوات 3x+6y=26، میں x کے لئے\frac{-3y+13}{4} کو متبادل کریں۔
-\frac{9}{4}y+\frac{39}{4}+6y=26
3 کو \frac{-3y+13}{4} مرتبہ ضرب دیں۔
\frac{15}{4}y+\frac{39}{4}=26
-\frac{9y}{4} کو 6y میں شامل کریں۔
\frac{15}{4}y=\frac{65}{4}
مساوات کے دونوں اطراف سے \frac{39}{4} منہا کریں۔
y=\frac{13}{3}
مساوات کی دونوں اطراف کو \frac{15}{4} سے تقسیم کریں، جو کہ دونوں اطراف کو کسر کے معکوس کو ضرب دینے کی طرح ہے۔
x=-\frac{3}{4}\times \frac{13}{3}+\frac{13}{4}
x=-\frac{3}{4}y+\frac{13}{4} میں y کے لئے \frac{13}{3} کو متبادل کریں۔ کیونکہ نتیجہ دار مساوات صرف ایک ہی متغیرہ کا حامل ہے، آپ x کے لیئے براہ راست حل کر سکتے ہیں۔
x=\frac{-13+13}{4}
نیومیریٹر کو نیومیریٹر بار اور ڈینومینیٹر کو ڈینومینیٹر بار ضرب دے کر \frac{13}{3} کو -\frac{3}{4} مرتبہ ضرب دیں۔ اور پھر کسر کو اگر ممکن ہو تو کم ترین اصطلاح تک کم کریں۔
x=0
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{13}{4} کو -\frac{13}{4} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
x=0,y=\frac{13}{3}
نظام اب حل ہو گیا ہے۔
4x+3y=13,3x+6y=26
مساواتوں کو معیاری وضع میں ڈالیں اور پھر مساوات کے نظام کو حل کرنے کے لیے میٹرکس استعمال کریں۔
\left(\begin{matrix}4&3\\3&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\26\end{matrix}\right)
مساواتوں کو میٹرکس صورت میں لکھیں۔
inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}4&3\\3&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}13\\26\end{matrix}\right)
\left(\begin{matrix}4&3\\3&6\end{matrix}\right) کے معکوس میٹرکس سے بائیں جانب مساوات سے ضرب دیں۔
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}13\\26\end{matrix}\right)
ایک میٹرکس کا حاصل ضرب اور اس کا معکوس شناختی میٹرکس ہے۔
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&6\end{matrix}\right))\left(\begin{matrix}13\\26\end{matrix}\right)
مساوی نشان کے بائیں ہاتھ کی جانب میٹرکس کو ضرب دیں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-3\times 3}&-\frac{3}{4\times 6-3\times 3}\\-\frac{3}{4\times 6-3\times 3}&\frac{4}{4\times 6-3\times 3}\end{matrix}\right)\left(\begin{matrix}13\\26\end{matrix}\right)
2\times 2 میٹرکس \left(\begin{matrix}a&b\\c&d\end{matrix}\right) کے لئے، معکوس میٹرکس \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ہے، لہذا میٹرکس مساوات کو میٹرکس ضرب مسئلہ کے طور پر دوبارہ لکھا جا سکتا ہے۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}13\\26\end{matrix}\right)
حساب کریں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 13-\frac{1}{5}\times 26\\-\frac{1}{5}\times 13+\frac{4}{15}\times 26\end{matrix}\right)
میٹرکس کو ضرب دیں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{13}{3}\end{matrix}\right)
حساب کریں۔
x=0,y=\frac{13}{3}
میٹرکس کے x اور y عناصر کو اخذ کریں۔
4x+3y=13,3x+6y=26
خارجی طریقے سے حل کرنے کے لیئے، متغیرات میں سے کسی ایک کا عددی سر دونوں مساوات میں لازمی ایک جیسا ہونا چاہیئے تا کہ ایک متغیر دوسرے متغیر سے تفریق ہونے کی صورت میں متغیرات منسوخ ہوجائیں۔
3\times 4x+3\times 3y=3\times 13,4\times 3x+4\times 6y=4\times 26
4x اور 3x کو برابر بنانے کے لئے، تمام اصطلاحات کو پہلے قاعدے پر 3 سے اور تمام اصطلاحات کو دوسرے کی ہر ایک جانب 4 سے ضرب دیں۔
12x+9y=39,12x+24y=104
سادہ کریں۔
12x-12x+9y-24y=39-104
مساوی نشان کی ہر جانب ایک جیسے اصطلاحات کو تفریق کر کے 12x+24y=104 کو 12x+9y=39 سے منہا کریں۔
9y-24y=39-104
12x کو -12x میں شامل کریں۔ اصطلاحات 12x اور -12x قلم زد ہو گئے ہیں، جس کے نتیجے میں مساوات میں صرف ایک متغیر باقی ہے جے حل کیا جا سکتا ہے۔
-15y=39-104
9y کو -24y میں شامل کریں۔
-15y=-65
39 کو -104 میں شامل کریں۔
y=\frac{13}{3}
-15 سے دونوں اطراف کو تقسیم کریں۔
3x+6\times \frac{13}{3}=26
3x+6y=26 میں y کے لئے \frac{13}{3} کو متبادل کریں۔ کیونکہ نتیجہ دار مساوات صرف ایک ہی متغیرہ کا حامل ہے، آپ x کے لیئے براہ راست حل کر سکتے ہیں۔
3x+26=26
6 کو \frac{13}{3} مرتبہ ضرب دیں۔
3x=0
مساوات کے دونوں اطراف سے 26 منہا کریں۔
x=0
3 سے دونوں اطراف کو تقسیم کریں۔
x=0,y=\frac{13}{3}
نظام اب حل ہو گیا ہے۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}