اہم مواد پر چھوڑ دیں
x، y کے لئے حل کریں
Tick mark Image
مخطط

ویب سرچ سے اسی طرح کے مسائل

حصہ

12x+3y=5,3x+2y=70
متبادل کا استعمال کرتے ہوئے مساواتوں کے جوڑے کو حل کرنے کے لیئے، پہلے کسی ایک متغیر کے لیئے مساواتوں میں سے کسی ایک کو حل کریں۔ پھر اس متغیر کے لیئے نتائج کو کسی دوسری مساوات میں متبادل کریں۔
12x+3y=5
مساوی نشان کی بائیں ہاتھ کی جانب x کو اکیلا کر کے ان مساوات میں سے ایک کا انتخاب کریں اور اسے x کے لئے حل کریں۔
12x=-3y+5
مساوات کے دونوں اطراف سے 3y منہا کریں۔
x=\frac{1}{12}\left(-3y+5\right)
12 سے دونوں اطراف کو تقسیم کریں۔
x=-\frac{1}{4}y+\frac{5}{12}
\frac{1}{12} کو -3y+5 مرتبہ ضرب دیں۔
3\left(-\frac{1}{4}y+\frac{5}{12}\right)+2y=70
دیگر مساوات 3x+2y=70، میں x کے لئے-\frac{y}{4}+\frac{5}{12} کو متبادل کریں۔
-\frac{3}{4}y+\frac{5}{4}+2y=70
3 کو -\frac{y}{4}+\frac{5}{12} مرتبہ ضرب دیں۔
\frac{5}{4}y+\frac{5}{4}=70
-\frac{3y}{4} کو 2y میں شامل کریں۔
\frac{5}{4}y=\frac{275}{4}
مساوات کے دونوں اطراف سے \frac{5}{4} منہا کریں۔
y=55
مساوات کی دونوں اطراف کو \frac{5}{4} سے تقسیم کریں، جو کہ دونوں اطراف کو کسر کے معکوس کو ضرب دینے کی طرح ہے۔
x=-\frac{1}{4}\times 55+\frac{5}{12}
x=-\frac{1}{4}y+\frac{5}{12} میں y کے لئے 55 کو متبادل کریں۔ کیونکہ نتیجہ دار مساوات صرف ایک ہی متغیرہ کا حامل ہے، آپ x کے لیئے براہ راست حل کر سکتے ہیں۔
x=-\frac{55}{4}+\frac{5}{12}
-\frac{1}{4} کو 55 مرتبہ ضرب دیں۔
x=-\frac{40}{3}
ایک مشترکہ ڈینومینیٹر کو ڈھونڈتے ہوئے اور نیومیریٹر کو شامل کر کے \frac{5}{12} کو -\frac{55}{4} میں شامل کریں۔ اور پھر کسر کو اگر ممکن ہو تو پست ترین اصطلاح تک گھٹائیں۔
x=-\frac{40}{3},y=55
نظام اب حل ہو گیا ہے۔
12x+3y=5,3x+2y=70
مساواتوں کو معیاری وضع میں ڈالیں اور پھر مساوات کے نظام کو حل کرنے کے لیے میٹرکس استعمال کریں۔
\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\70\end{matrix}\right)
مساواتوں کو میٹرکس صورت میں لکھیں۔
inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
\left(\begin{matrix}12&3\\3&2\end{matrix}\right) کے معکوس میٹرکس سے بائیں جانب مساوات سے ضرب دیں۔
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
ایک میٹرکس کا حاصل ضرب اور اس کا معکوس شناختی میٹرکس ہے۔
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
مساوی نشان کے بائیں ہاتھ کی جانب میٹرکس کو ضرب دیں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{12\times 2-3\times 3}&-\frac{3}{12\times 2-3\times 3}\\-\frac{3}{12\times 2-3\times 3}&\frac{12}{12\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
2\times 2 میٹرکس \left(\begin{matrix}a&b\\c&d\end{matrix}\right) کے لئے، معکوس میٹرکس \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ہے، لہذا میٹرکس مساوات کو میٹرکس ضرب مسئلہ کے طور پر دوبارہ لکھا جا سکتا ہے۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}&-\frac{1}{5}\\-\frac{1}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
حساب کریں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}\times 5-\frac{1}{5}\times 70\\-\frac{1}{5}\times 5+\frac{4}{5}\times 70\end{matrix}\right)
میٹرکس کو ضرب دیں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{40}{3}\\55\end{matrix}\right)
حساب کریں۔
x=-\frac{40}{3},y=55
میٹرکس کے x اور y عناصر کو اخذ کریں۔
12x+3y=5,3x+2y=70
خارجی طریقے سے حل کرنے کے لیئے، متغیرات میں سے کسی ایک کا عددی سر دونوں مساوات میں لازمی ایک جیسا ہونا چاہیئے تا کہ ایک متغیر دوسرے متغیر سے تفریق ہونے کی صورت میں متغیرات منسوخ ہوجائیں۔
3\times 12x+3\times 3y=3\times 5,12\times 3x+12\times 2y=12\times 70
12x اور 3x کو برابر بنانے کے لئے، تمام اصطلاحات کو پہلے قاعدے پر 3 سے اور تمام اصطلاحات کو دوسرے کی ہر ایک جانب 12 سے ضرب دیں۔
36x+9y=15,36x+24y=840
سادہ کریں۔
36x-36x+9y-24y=15-840
مساوی نشان کی ہر جانب ایک جیسے اصطلاحات کو تفریق کر کے 36x+24y=840 کو 36x+9y=15 سے منہا کریں۔
9y-24y=15-840
36x کو -36x میں شامل کریں۔ اصطلاحات 36x اور -36x قلم زد ہو گئے ہیں، جس کے نتیجے میں مساوات میں صرف ایک متغیر باقی ہے جے حل کیا جا سکتا ہے۔
-15y=15-840
9y کو -24y میں شامل کریں۔
-15y=-825
15 کو -840 میں شامل کریں۔
y=55
-15 سے دونوں اطراف کو تقسیم کریں۔
3x+2\times 55=70
3x+2y=70 میں y کے لئے 55 کو متبادل کریں۔ کیونکہ نتیجہ دار مساوات صرف ایک ہی متغیرہ کا حامل ہے، آپ x کے لیئے براہ راست حل کر سکتے ہیں۔
3x+110=70
2 کو 55 مرتبہ ضرب دیں۔
3x=-40
مساوات کے دونوں اطراف سے 110 منہا کریں۔
x=-\frac{40}{3}
3 سے دونوں اطراف کو تقسیم کریں۔
x=-\frac{40}{3},y=55
نظام اب حل ہو گیا ہے۔