z، j، k، l، m کے لئے حل کریں
m=2i
حصہ
کلپ بورڈ پر کاپی کیا گیا
z^{2}-2iz+3=z\left(z-i\right)
پہلی مساوات پر غور کریں۔ z+i کو ایک سے z-3i ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں اور ایک جیسی اصطلاحات کو یکجا کریں۔
z^{2}-2iz+3=z^{2}-iz
z کو ایک سے z-i ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
z^{2}-2iz+3-z^{2}=-iz
z^{2} کو دونوں طرف سے منہا کریں۔
-2iz+3=-iz
0 حاصل کرنے کے لئے z^{2} اور -z^{2} کو یکجا کریں۔
-2iz+3-\left(-iz\right)=0
-iz کو دونوں طرف سے منہا کریں۔
-iz+3=0
-iz حاصل کرنے کے لئے -2iz اور iz کو یکجا کریں۔
-iz=-3
3 کو دونوں طرف سے منہا کریں۔ کوئی بھی چیز صفر میں سے تفریق ہوکر اپنا نفی دیتی ہے۔
z=\frac{-3}{-i}
-i سے دونوں اطراف کو تقسیم کریں۔
z=\frac{-3i}{1}
\frac{-3}{-i} کے شمار کنندہ اور نسب نما دونوں کو غیر حقیقی یونٹ i کے ذریعے ضرب دیں۔
z=-3i
-3i حاصل کرنے کے لئے -3i کو 1 سے تقسیم کریں۔
j=2i
دوسری مساوات پر غور کریں۔ 2 کی 1+i پاور کا حساب کریں اور 2i حاصل کریں۔
k=2i
تیسری مساوات پر غور کریں۔ متغیرات کی معروف اقدار کو مساوات میں داخل کریں۔
l=2i
چوتھی مساوات پر غور کریں۔ متغیرات کی معروف اقدار کو مساوات میں داخل کریں۔
m=2i
پانچویں مساوات پر غور کریں۔ متغیرات کی معروف اقدار کو مساوات میں داخل کریں۔
z=-3i j=2i k=2i l=2i m=2i
نظام اب حل ہو گیا ہے۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}