x، y کے لئے حل کریں
x=25
y=15
مخطط
حصہ
کلپ بورڈ پر کاپی کیا گیا
10x+14y=460,x+y=40
متبادل کا استعمال کرتے ہوئے مساواتوں کے جوڑے کو حل کرنے کے لیئے، پہلے کسی ایک متغیر کے لیئے مساواتوں میں سے کسی ایک کو حل کریں۔ پھر اس متغیر کے لیئے نتائج کو کسی دوسری مساوات میں متبادل کریں۔
10x+14y=460
مساوی نشان کی بائیں ہاتھ کی جانب x کو اکیلا کر کے ان مساوات میں سے ایک کا انتخاب کریں اور اسے x کے لئے حل کریں۔
10x=-14y+460
مساوات کے دونوں اطراف سے 14y منہا کریں۔
x=\frac{1}{10}\left(-14y+460\right)
10 سے دونوں اطراف کو تقسیم کریں۔
x=-\frac{7}{5}y+46
\frac{1}{10} کو -14y+460 مرتبہ ضرب دیں۔
-\frac{7}{5}y+46+y=40
دیگر مساوات x+y=40، میں x کے لئے-\frac{7y}{5}+46 کو متبادل کریں۔
-\frac{2}{5}y+46=40
-\frac{7y}{5} کو y میں شامل کریں۔
-\frac{2}{5}y=-6
مساوات کے دونوں اطراف سے 46 منہا کریں۔
y=15
مساوات کی دونوں اطراف کو -\frac{2}{5} سے تقسیم کریں، جو کہ دونوں اطراف کو کسر کے معکوس کو ضرب دینے کی طرح ہے۔
x=-\frac{7}{5}\times 15+46
x=-\frac{7}{5}y+46 میں y کے لئے 15 کو متبادل کریں۔ کیونکہ نتیجہ دار مساوات صرف ایک ہی متغیرہ کا حامل ہے، آپ x کے لیئے براہ راست حل کر سکتے ہیں۔
x=-21+46
-\frac{7}{5} کو 15 مرتبہ ضرب دیں۔
x=25
46 کو -21 میں شامل کریں۔
x=25,y=15
نظام اب حل ہو گیا ہے۔
10x+14y=460,x+y=40
مساواتوں کو معیاری وضع میں ڈالیں اور پھر مساوات کے نظام کو حل کرنے کے لیے میٹرکس استعمال کریں۔
\left(\begin{matrix}10&14\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}460\\40\end{matrix}\right)
مساواتوں کو میٹرکس صورت میں لکھیں۔
inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}10&14\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}460\\40\end{matrix}\right)
\left(\begin{matrix}10&14\\1&1\end{matrix}\right) کے معکوس میٹرکس سے بائیں جانب مساوات سے ضرب دیں۔
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}460\\40\end{matrix}\right)
ایک میٹرکس کا حاصل ضرب اور اس کا معکوس شناختی میٹرکس ہے۔
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&14\\1&1\end{matrix}\right))\left(\begin{matrix}460\\40\end{matrix}\right)
مساوی نشان کے بائیں ہاتھ کی جانب میٹرکس کو ضرب دیں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-14}&-\frac{14}{10-14}\\-\frac{1}{10-14}&\frac{10}{10-14}\end{matrix}\right)\left(\begin{matrix}460\\40\end{matrix}\right)
2\times 2 میٹرکس \left(\begin{matrix}a&b\\c&d\end{matrix}\right) کے لئے، معکوس میٹرکس \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ہے، لہذا میٹرکس مساوات کو میٹرکس ضرب مسئلہ کے طور پر دوبارہ لکھا جا سکتا ہے۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{7}{2}\\\frac{1}{4}&-\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}460\\40\end{matrix}\right)
حساب کریں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 460+\frac{7}{2}\times 40\\\frac{1}{4}\times 460-\frac{5}{2}\times 40\end{matrix}\right)
میٹرکس کو ضرب دیں۔
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
حساب کریں۔
x=25,y=15
میٹرکس کے x اور y عناصر کو اخذ کریں۔
10x+14y=460,x+y=40
خارجی طریقے سے حل کرنے کے لیئے، متغیرات میں سے کسی ایک کا عددی سر دونوں مساوات میں لازمی ایک جیسا ہونا چاہیئے تا کہ ایک متغیر دوسرے متغیر سے تفریق ہونے کی صورت میں متغیرات منسوخ ہوجائیں۔
10x+14y=460,10x+10y=10\times 40
10x اور x کو برابر بنانے کے لئے، تمام اصطلاحات کو پہلے قاعدے پر 1 سے اور تمام اصطلاحات کو دوسرے کی ہر ایک جانب 10 سے ضرب دیں۔
10x+14y=460,10x+10y=400
سادہ کریں۔
10x-10x+14y-10y=460-400
مساوی نشان کی ہر جانب ایک جیسے اصطلاحات کو تفریق کر کے 10x+10y=400 کو 10x+14y=460 سے منہا کریں۔
14y-10y=460-400
10x کو -10x میں شامل کریں۔ اصطلاحات 10x اور -10x قلم زد ہو گئے ہیں، جس کے نتیجے میں مساوات میں صرف ایک متغیر باقی ہے جے حل کیا جا سکتا ہے۔
4y=460-400
14y کو -10y میں شامل کریں۔
4y=60
460 کو -400 میں شامل کریں۔
y=15
4 سے دونوں اطراف کو تقسیم کریں۔
x+15=40
x+y=40 میں y کے لئے 15 کو متبادل کریں۔ کیونکہ نتیجہ دار مساوات صرف ایک ہی متغیرہ کا حامل ہے، آپ x کے لیئے براہ راست حل کر سکتے ہیں۔
x=25
مساوات کے دونوں اطراف سے 15 منہا کریں۔
x=25,y=15
نظام اب حل ہو گیا ہے۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}