\left| \begin{array} { c c c } { 0 } & { 1 } & { 5 } \\ { 35 } & { 0 } & { 1 } \\ { 12 } & { 13 } & { 14 } \end{array} \right|
جائزہ ليں
1797
عنصر
3\times 599
حصہ
کلپ بورڈ پر کاپی کیا گیا
det(\left(\begin{matrix}0&1&5\\35&0&1\\12&13&14\end{matrix}\right))
قطرکا طریقہ استعمال کرتے ہوئے قطعی کا میٹرکس تلاش کریں۔
\left(\begin{matrix}0&1&5&0&1\\35&0&1&35&0\\12&13&14&12&13\end{matrix}\right)
پہلے دو کالمز کو چوتھے اور پانچویں کالمز کے طور پر دہراتے ہوئے اصل میٹرکس کو وسیع کریں۔
12+5\times 35\times 13=2287
بالائی بائیں اندراج سے شروع کرتے ہوئے، نیچے قطری کے ساتھ ضرب دیں، اور مصنوعات کے نتیجے شامل کریں۔
14\times 35=490
نیچے بائیں اندراج سے شروع کرتے ہوئے، قطری کے ساتھ ساتھ ضرب دیں، اور مصنوعات کے نتیجے شامل کریں.
2287-490
نیچے کی طرف قطری کی مصنوعات کے کل میزان میں سے اوپر کی طرف قطری کی مصنوعات کے کل میزان کو منہا کریں۔
1797
490 کو 2287 میں سے منہا کریں۔
det(\left(\begin{matrix}0&1&5\\35&0&1\\12&13&14\end{matrix}\right))
قلیل توسیع کا طریقہ استعمال کرتے ہوئے میٹرکس کا قطعی تلاش کریں (جسے ضربی کی طرف سے توسیع بھی کہا جاتا ہے)۔
-det(\left(\begin{matrix}35&1\\12&14\end{matrix}\right))+5det(\left(\begin{matrix}35&0\\12&13\end{matrix}\right))
قلیل کو وسیع کرنے کے لیے، پہلی صف کے ہر عنصر کو اس کے قلیل سے ضرب دیں جو کہ اس عنصر میں موجود صف اور کالم کو قطعی 2\times 2 میٹرکس کے صف اور کالم کے اس عنصر کا حامل حذف کر رہا ہے کی طرف سے بنایا گیا ہے، پھر عنصر کی پوزیشن نشان کی طرف سے ضرب کریں۔
-\left(35\times 14-12\right)+5\times 35\times 13
2\times 2میٹرکس \left(\begin{matrix}a&b\\c&d\end{matrix}\right) کے لئے، قطعی ad-bc ہے۔
-478+5\times 455
سادہ کریں۔
1797
حتمی نتیجہ حاصل کرنے کے لیے قواعد کو شامل کریں۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}