اہم مواد پر چھوڑ دیں
جائزہ ليں
Tick mark Image
w.r.t. x میں فرق کریں
Tick mark Image

ویب سرچ سے اسی طرح کے مسائل

حصہ

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
\left(x^{2}+1\right)^{3} میں توسیع کے لئے دو رقمى کليہ \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} استعمال کریں۔
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 6 حاصل کرنے کے لئے 2 اور 3 کو ضرب دیں۔
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
کسی بھی دوسری قوت کی قوت کو بڑھانے کے لیئے، قوت نما کو ضرب دیں۔ 4 حاصل کرنے کے لئے 2 اور 2 کو ضرب دیں۔
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
2x کو ایک سے x^{6}+3x^{4}+3x^{2}+1 ضرب دینے کے لیئے منقسم خاصیت کا استعمال کریں۔
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
اصطلاحی لحاظ سے مجموعی اصطلاح ضم کریں۔
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
مدت معینہ میں سے ہر ایک میں مسلسل عنصر۔
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} سے k\neq -1کے لئے،\int x^{7}\mathrm{d}x کو \frac{x^{8}}{8}کے ساتھ تبدیل کریں. 2 کو \frac{x^{8}}{8} مرتبہ ضرب دیں۔
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} سے k\neq -1کے لئے،\int x^{5}\mathrm{d}x کو \frac{x^{6}}{6}کے ساتھ تبدیل کریں. 6 کو \frac{x^{6}}{6} مرتبہ ضرب دیں۔
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} سے k\neq -1کے لئے،\int x^{3}\mathrm{d}x کو \frac{x^{4}}{4}کے ساتھ تبدیل کریں. 6 کو \frac{x^{4}}{4} مرتبہ ضرب دیں۔
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} سے k\neq -1کے لئے،\int x\mathrm{d}x کو \frac{x^{2}}{2}کے ساتھ تبدیل کریں. 2 کو \frac{x^{2}}{2} مرتبہ ضرب دیں۔
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
اگر F\left(x\right) f\left(x\right)کا ایک ضد مشتق ہے تو پھر f\left(x\right) کی تمام مشتق شکن کا مجموعہ F\left(x\right)+Cسے دیا جاتا ہے ۔ لہذا ، نتیجہ میں C\in \mathrm{R} انضمام کی مسلسل شامل کریں.