جائزہ ليں
\frac{3x^{2}-18x+1}{\left(x-3\right)^{2}}
w.r.t. x میں فرق کریں
\frac{52}{\left(x-3\right)^{3}}
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-1)-\left(3x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
کسی بھی دو مختلف عوامل کے لیے، دو عوامل کے مخلوط کے مشتق ڈینومینیٹر مرتبہ نومیریٹر کا مشتق نیومیریٹر مرتبہ ڈینومینیٹر کا مشتق ہے، تمام کے تمام مربع کیئے گئے ڈینومیل سے تقسیم کیئے گئے ہیں۔
\frac{\left(x^{1}-3\right)\times 2\times 3x^{2-1}-\left(3x^{2}-1\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
\frac{\left(x^{1}-3\right)\times 6x^{1}-\left(3x^{2}-1\right)x^{0}}{\left(x^{1}-3\right)^{2}}
حساب کریں۔
\frac{x^{1}\times 6x^{1}-3\times 6x^{1}-\left(3x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
منقسم خاصیت کا استعمال کرتے ہوئے توسیع کریں۔
\frac{6x^{1+1}-3\times 6x^{1}-\left(3x^{2}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
\frac{6x^{2}-18x^{1}-\left(3x^{2}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
حساب کریں۔
\frac{6x^{2}-18x^{1}-3x^{2}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
غیر ضروری قوسین ہٹائیں۔
\frac{\left(6-3\right)x^{2}-18x^{1}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
ایک جیسی اصطلاحات یکجا کریں۔
\frac{3x^{2}-18x^{1}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
3 کو 6 میں سے منہا کریں۔
\frac{3x^{2}-18x-\left(-x^{0}\right)}{\left(x-3\right)^{2}}
کسی بھی اصطلاح کے لئے t، t^{1}=t۔
\frac{3x^{2}-18x-\left(-1\right)}{\left(x-3\right)^{2}}
کسی بھی اصطلاح t کے لئے سوائے 0، t^{0}=1۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}