جائزہ ليں
\frac{x^{2}-4x+1}{\left(x-2\right)^{2}}
w.r.t. x میں فرق کریں
\frac{6}{\left(x-2\right)^{3}}
حصہ
کلپ بورڈ پر کاپی کیا گیا
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+1)-\left(x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
کسی بھی دو مختلف عوامل کے لیے، دو عوامل کے مخلوط کے مشتق ڈینومینیٹر مرتبہ نومیریٹر کا مشتق نیومیریٹر مرتبہ ڈینومینیٹر کا مشتق ہے، تمام کے تمام مربع کیئے گئے ڈینومیل سے تقسیم کیئے گئے ہیں۔
\frac{\left(x^{2}-x^{1}-2\right)\times 3x^{3-1}-\left(x^{3}+1\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
کثیر رقمی کا مشتق اس کی اصطلاحات کے مشتق کا کل میزان ہے۔ کسی بھی مستقل اصطلاح کا مشتق 0 ہے۔ ax^{n} کا مشتق nax^{n-1} ہے۔
\frac{\left(x^{2}-x^{1}-2\right)\times 3x^{2}-\left(x^{3}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
سادہ کریں۔
\frac{x^{2}\times 3x^{2}-x^{1}\times 3x^{2}-2\times 3x^{2}-\left(x^{3}+1\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{2}-x^{1}-2 کو 3x^{2} مرتبہ ضرب دیں۔
\frac{x^{2}\times 3x^{2}-x^{1}\times 3x^{2}-2\times 3x^{2}-\left(x^{3}\times 2x^{1}+x^{3}\left(-1\right)x^{0}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{3}+1 کو 2x^{1}-x^{0} مرتبہ ضرب دیں۔
\frac{3x^{2+2}-3x^{1+2}-2\times 3x^{2}-\left(2x^{3+1}-x^{3}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
ایک سی بنیاد کی پاورز کو ضرب دینے کے لیئے، ان کی قوتوں کو شامل کریں۔
\frac{3x^{4}-3x^{3}-6x^{2}-\left(2x^{4}-x^{3}+2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
سادہ کریں۔
\frac{x^{4}-2x^{3}-6x^{2}-2x^{1}-\left(-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
ایک جیسی اصطلاحات یکجا کریں۔
\frac{x^{4}-2x^{3}-6x^{2}-2x-\left(-x^{0}\right)}{\left(x^{2}-x-2\right)^{2}}
کسی بھی اصطلاح کے لئے t، t^{1}=t۔
\frac{x^{4}-2x^{3}-6x^{2}-2x-\left(-1\right)}{\left(x^{2}-x-2\right)^{2}}
کسی بھی اصطلاح t کے لئے سوائے 0، t^{0}=1۔
مثالیں
دوطرفہ مساوات
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
لکیری مساوات
y = 3x + 4
حساب
699 * 533
میٹرکس
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
بیک وقت مساوات
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
تمايُز
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
انضمام
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
حدود
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}